summaryrefslogtreecommitdiff
path: root/rust/kernel/fs.rs
blob: 38f57fd18478c108286a0c47c9e3dc56b1f3ad22 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
// SPDX-License-Identifier: GPL-2.0

//! File systems.
//!
//! C headers: [`include/linux/fs.h`](../../../../include/linux/fs.h)

use crate::{
    bindings, error::code::*, error::from_kernel_result, str::CStr, to_result,
    types::PointerWrapper, AlwaysRefCounted, Error, Result, ScopeGuard, ThisModule,
};
use alloc::boxed::Box;
use core::{
    cell::UnsafeCell,
    marker::{PhantomData, PhantomPinned},
    pin::Pin,
    ptr,
};
use macros::vtable;

pub mod param;

/// Type of superblock keying.
///
/// It determines how C's `fs_context_operations::get_tree` is implemented.
pub enum Super {
    /// Only one such superblock may exist.
    Single,

    /// As [`Super::Single`], but reconfigure if it exists.
    SingleReconf,

    /// Superblocks with different data pointers may exist.
    Keyed,

    /// Multiple independent superblocks may exist.
    Independent,

    /// Uses a block device.
    BlockDev,
}

/// A file system context.
///
/// It is used to gather configuration to then mount or reconfigure a file system.
#[vtable]
pub trait Context<T: Type + ?Sized> {
    /// Type of the data associated with the context.
    type Data: PointerWrapper + Send + Sync + 'static;

    /// The typed file system parameters.
    ///
    /// Users are encouraged to define it using the [`crate::define_fs_params`] macro.
    const PARAMS: param::SpecTable<'static, Self::Data> = param::SpecTable::empty();

    /// Creates a new context.
    fn try_new() -> Result<Self::Data>;

    /// Parses a parameter that wasn't specified in [`Self::PARAMS`].
    fn parse_unknown_param(
        _data: &mut Self::Data,
        _name: &CStr,
        _value: param::Value<'_>,
    ) -> Result {
        Err(ENOPARAM)
    }

    /// Parses the whole parameter block, potentially skipping regular handling for parts of it.
    ///
    /// The return value is the portion of the input buffer for which the regular handling
    /// (involving [`Self::PARAMS`] and [`Self::parse_unknown_param`]) will still be carried out.
    /// If it's `None`, the regular handling is not performed at all.
    fn parse_monolithic<'a>(
        _data: &mut Self::Data,
        _buf: Option<&'a mut [u8]>,
    ) -> Result<Option<&'a mut [u8]>> {
        Ok(None)
    }

    /// Returns the superblock data to be used by this file system context.
    ///
    /// This is only needed when [`Type::SUPER_TYPE`] is [`Super::Keyed`], otherwise it is never
    /// called. In the former case, when the fs is being mounted, an existing superblock is reused
    /// if one can be found with the same data as the returned value; otherwise a new superblock is
    /// created.
    fn tree_key(_data: &mut Self::Data) -> Result<T::Data> {
        Err(ENOTSUPP)
    }
}

struct Tables<T: Type + ?Sized>(T);
impl<T: Type + ?Sized> Tables<T> {
    const CONTEXT: bindings::fs_context_operations = bindings::fs_context_operations {
        free: Some(Self::free_callback),
        parse_param: Some(Self::parse_param_callback),
        get_tree: Some(Self::get_tree_callback),
        reconfigure: Some(Self::reconfigure_callback),
        parse_monolithic: if <T::Context as Context<T>>::HAS_PARSE_MONOLITHIC {
            Some(Self::parse_monolithic_callback)
        } else {
            None
        },
        dup: None,
    };

    unsafe extern "C" fn free_callback(fc: *mut bindings::fs_context) {
        // SAFETY: The callback contract guarantees that `fc` is valid.
        let fc = unsafe { &*fc };

        let ptr = fc.fs_private;
        if !ptr.is_null() {
            // SAFETY: `fs_private` was initialised with the result of a `to_pointer` call in
            // `init_fs_context_callback`, so it's ok to call `from_pointer` here.
            unsafe { <T::Context as Context<T>>::Data::from_pointer(ptr) };
        }

        let ptr = fc.s_fs_info;
        if !ptr.is_null() {
            // SAFETY: `s_fs_info` may be initialised with the result of a `to_pointer` call in
            // `get_tree_callback` when keyed superblocks are used (`get_tree_keyed` sets it), so
            // it's ok to call `from_pointer` here.
            unsafe { T::Data::from_pointer(ptr) };
        }
    }

    unsafe extern "C" fn parse_param_callback(
        fc: *mut bindings::fs_context,
        param: *mut bindings::fs_parameter,
    ) -> core::ffi::c_int {
        from_kernel_result! {
            // SAFETY: The callback contract guarantees that `fc` is valid.
            let ptr = unsafe { (*fc).fs_private };

            // SAFETY: The value of `ptr` (coming from `fs_private` was initialised in
            // `init_fs_context_callback` to the result of an `into_pointer` call. Since the
            // context is valid, `from_pointer` wasn't called yet, so `ptr` is valid. Additionally,
            // the callback contract guarantees that callbacks are serialised, so it is ok to
            // mutably reference it.
            let mut data =
                unsafe { <<T::Context as Context<T>>::Data as PointerWrapper>::borrow_mut(ptr) };
            let mut result = bindings::fs_parse_result::default();
            // SAFETY: All parameters are valid at least for the duration of the call.
            let opt =
                unsafe { bindings::fs_parse(fc, T::Context::PARAMS.first, param, &mut result) };

            // SAFETY: The callback contract guarantees that `param` is valid for the duration of
            // the callback.
            let param = unsafe { &*param };
            if opt >= 0 {
                let opt = opt as usize;
                if opt >= T::Context::PARAMS.handlers.len() {
                    return Err(EINVAL);
                }
                T::Context::PARAMS.handlers[opt].handle_param(&mut data, param, &result)?;
                return Ok(0);
            }

            if opt != ENOPARAM.to_kernel_errno() {
                return Err(Error::from_kernel_errno(opt));
            }

            if !T::Context::HAS_PARSE_UNKNOWN_PARAM {
                return Err(ENOPARAM);
            }

            let val = param::Value::from_fs_parameter(param);
            // SAFETY: The callback contract guarantees the parameter key to be valid and last at
            // least the duration of the callback.
            T::Context::parse_unknown_param(
                &mut data,
                unsafe { CStr::from_char_ptr(param.key) },
                val,
            )?;
            Ok(0)
        }
    }

    unsafe extern "C" fn fill_super_callback(
        sb_ptr: *mut bindings::super_block,
        fc: *mut bindings::fs_context,
    ) -> core::ffi::c_int {
        from_kernel_result! {
            // SAFETY: The callback contract guarantees that `fc` is valid. It also guarantees that
            // the callbacks are serialised for a given `fc`, so it is safe to mutably dereference
            // it.
            let fc = unsafe { &mut *fc };
            let ptr = core::mem::replace(&mut fc.fs_private, ptr::null_mut());

            // SAFETY: The value of `ptr` (coming from `fs_private` was initialised in
            // `init_fs_context_callback` to the result of an `into_pointer` call. The context is
            // being used to initialise a superblock, so we took over `ptr` (`fs_private` is set to
            // null now) and call `from_pointer` below.
            let data =
                unsafe { <<T::Context as Context<T>>::Data as PointerWrapper>::from_pointer(ptr) };

            // SAFETY: The callback contract guarantees that `sb_ptr` is a unique pointer to a
            // newly-created superblock.
            let newsb = unsafe { NewSuperBlock::new(sb_ptr) };
            T::fill_super(data, newsb)?;
            Ok(0)
        }
    }

    unsafe extern "C" fn get_tree_callback(fc: *mut bindings::fs_context) -> core::ffi::c_int {
        // N.B. When new types are added below, we may need to update `kill_sb_callback` to ensure
        // that we're cleaning up properly.
        match T::SUPER_TYPE {
            Super::Single => unsafe {
                // SAFETY: `fc` is valid per the callback contract. `fill_super_callback` also has
                // the right type and is a valid callback.
                bindings::get_tree_single(fc, Some(Self::fill_super_callback))
            },
            Super::SingleReconf => unsafe {
                // SAFETY: `fc` is valid per the callback contract. `fill_super_callback` also has
                // the right type and is a valid callback.
                bindings::get_tree_single_reconf(fc, Some(Self::fill_super_callback))
            },
            Super::Independent => unsafe {
                // SAFETY: `fc` is valid per the callback contract. `fill_super_callback` also has
                // the right type and is a valid callback.
                bindings::get_tree_nodev(fc, Some(Self::fill_super_callback))
            },
            Super::BlockDev => unsafe {
                // SAFETY: `fc` is valid per the callback contract. `fill_super_callback` also has
                // the right type and is a valid callback.
                bindings::get_tree_bdev(fc, Some(Self::fill_super_callback))
            },
            Super::Keyed => {
                from_kernel_result! {
                    // SAFETY: `fc` is valid per the callback contract.
                    let ctx = unsafe { &*fc };
                    let ptr = ctx.fs_private;

                    // SAFETY: The value of `ptr` (coming from `fs_private` was initialised in
                    // `init_fs_context_callback` to the result of an `into_pointer` call. Since
                    // the context is valid, `from_pointer` wasn't called yet, so `ptr` is valid.
                    // Additionally, the callback contract guarantees that callbacks are
                    // serialised, so it is ok to mutably reference it.
                    let mut data = unsafe {
                        <<T::Context as Context<T>>::Data as PointerWrapper>::borrow_mut(ptr)
                    };
                    let fs_data = T::Context::tree_key(&mut data)?;
                    let fs_data_ptr = fs_data.into_pointer();

                    // `get_tree_keyed` reassigns `ctx.s_fs_info`, which should be ok because
                    // nowhere else is it assigned a non-null value. However, we add the assert
                    // below to ensure that there are no unexpected paths on the C side that may do
                    // this.
                    assert_eq!(ctx.s_fs_info, core::ptr::null_mut());

                    // SAFETY: `fc` is valid per the callback contract. `fill_super_callback` also
                    // has the right type and is a valid callback. Lastly, we just called
                    // `into_pointer` above, so `fs_data_ptr` is also valid.
                    to_result(unsafe {
                        bindings::get_tree_keyed(
                            fc,
                            Some(Self::fill_super_callback),
                            fs_data_ptr as _,
                        )
                    })?;
                    Ok(0)
                }
            }
        }
    }

    unsafe extern "C" fn reconfigure_callback(_fc: *mut bindings::fs_context) -> core::ffi::c_int {
        EINVAL.to_kernel_errno()
    }

    unsafe extern "C" fn parse_monolithic_callback(
        fc: *mut bindings::fs_context,
        buf: *mut core::ffi::c_void,
    ) -> core::ffi::c_int {
        from_kernel_result! {
            // SAFETY: The callback contract guarantees that `fc` is valid.
            let ptr = unsafe { (*fc).fs_private };

            // SAFETY: The value of `ptr` (coming from `fs_private` was initialised in
            // `init_fs_context_callback` to the result of an `into_pointer` call. Since the
            // context is valid, `from_pointer` wasn't called yet, so `ptr` is valid. Additionally,
            // the callback contract guarantees that callbacks are serialised, so it is ok to
            // mutably reference it.
            let mut data =
                unsafe { <<T::Context as Context<T>>::Data as PointerWrapper>::borrow_mut(ptr) };
            let page = if buf.is_null() {
                None
            } else {
                // SAFETY: This callback is called to handle the `mount` syscall, which takes a
                // page-sized buffer as data.
                Some(unsafe { &mut *ptr::slice_from_raw_parts_mut(buf.cast(), crate::PAGE_SIZE) })
            };
            let regular = T::Context::parse_monolithic(&mut data, page)?;
            if let Some(buf) = regular {
                // SAFETY: Both `fc` and `buf` are guaranteed to be valid; the former because the
                // callback is still ongoing and the latter because its lifefime is tied to that of
                // `page`, which is also valid for the duration of the callback.
                to_result(unsafe {
                    bindings::generic_parse_monolithic(fc, buf.as_mut_ptr().cast())
                })?;
            }
            Ok(0)
        }
    }

    const SUPER_BLOCK: bindings::super_operations = bindings::super_operations {
        alloc_inode: None,
        destroy_inode: None,
        free_inode: None,
        dirty_inode: None,
        write_inode: None,
        drop_inode: None,
        evict_inode: None,
        put_super: None,
        sync_fs: None,
        freeze_super: None,
        freeze_fs: None,
        thaw_super: None,
        unfreeze_fs: None,
        statfs: None,
        remount_fs: None,
        umount_begin: None,
        show_options: None,
        show_devname: None,
        show_path: None,
        show_stats: None,
        #[cfg(CONFIG_QUOTA)]
        quota_read: None,
        #[cfg(CONFIG_QUOTA)]
        quota_write: None,
        #[cfg(CONFIG_QUOTA)]
        get_dquots: None,
        nr_cached_objects: None,
        free_cached_objects: None,
    };
}

/// A file system type.
pub trait Type {
    /// The context used to build fs configuration before it is mounted or reconfigured.
    type Context: Context<Self> + ?Sized;

    /// Data associated with each file system instance.
    type Data: PointerWrapper + Send + Sync = ();

    /// Determines how superblocks for this file system type are keyed.
    const SUPER_TYPE: Super;

    /// The name of the file system type.
    const NAME: &'static CStr;

    /// The flags of this file system type.
    ///
    /// It is a combination of the flags in the [`flags`] module.
    const FLAGS: i32;

    /// Initialises a super block for this file system type.
    fn fill_super(
        data: <Self::Context as Context<Self>>::Data,
        sb: NewSuperBlock<'_, Self>,
    ) -> Result<&SuperBlock<Self>>;
}

/// File system flags.
pub mod flags {
    use crate::bindings;

    /// The file system requires a device.
    pub const REQUIRES_DEV: i32 = bindings::FS_REQUIRES_DEV as _;

    /// The options provided when mounting are in binary form.
    pub const BINARY_MOUNTDATA: i32 = bindings::FS_BINARY_MOUNTDATA as _;

    /// The file system has a subtype. It is extracted from the name and passed in as a parameter.
    pub const HAS_SUBTYPE: i32 = bindings::FS_HAS_SUBTYPE as _;

    /// The file system can be mounted by userns root.
    pub const USERNS_MOUNT: i32 = bindings::FS_USERNS_MOUNT as _;

    /// Disables fanotify permission events.
    pub const DISALLOW_NOTIFY_PERM: i32 = bindings::FS_DISALLOW_NOTIFY_PERM as _;

    /// The file system has been updated to handle vfs idmappings.
    pub const ALLOW_IDMAP: i32 = bindings::FS_ALLOW_IDMAP as _;

    /// The file systen will handle `d_move` during `rename` internally.
    pub const RENAME_DOES_D_MOVE: i32 = bindings::FS_RENAME_DOES_D_MOVE as _;
}

/// A file system registration.
#[derive(Default)]
pub struct Registration {
    is_registered: bool,
    fs: UnsafeCell<bindings::file_system_type>,
    _pin: PhantomPinned,
}

// SAFETY: `Registration` doesn't really provide any `&self` methods, so it is safe to pass
// references to it around.
unsafe impl Sync for Registration {}

// SAFETY: Both registration and unregistration are implemented in C and safe to be performed from
// any thread, so `Registration` is `Send`.
unsafe impl Send for Registration {}

impl Registration {
    /// Creates a new file system registration.
    ///
    /// It is not visible or accessible yet. A successful call to [`Registration::register`] needs
    /// to be made before users can mount it.
    pub fn new() -> Self {
        Self {
            is_registered: false,
            fs: UnsafeCell::new(bindings::file_system_type::default()),
            _pin: PhantomPinned,
        }
    }

    /// Registers a file system so that it can be mounted by users.
    ///
    /// The file system is described by the [`Type`] argument.
    ///
    /// It is automatically unregistered when the registration is dropped.
    pub fn register<T: Type + ?Sized>(self: Pin<&mut Self>, module: &'static ThisModule) -> Result {
        // SAFETY: We never move out of `this`.
        let this = unsafe { self.get_unchecked_mut() };

        if this.is_registered {
            return Err(EINVAL);
        }

        let mut fs = this.fs.get_mut();
        fs.owner = module.0;
        fs.name = T::NAME.as_char_ptr();
        fs.fs_flags = T::FLAGS;
        fs.parameters = T::Context::PARAMS.first;
        fs.init_fs_context = Some(Self::init_fs_context_callback::<T>);
        fs.kill_sb = Some(Self::kill_sb_callback::<T>);

        // SAFETY: This block registers all fs type keys with lockdep. We just need the memory
        // locations to be owned by the caller, which is the case.
        unsafe {
            bindings::lockdep_register_key(&mut fs.s_lock_key);
            bindings::lockdep_register_key(&mut fs.s_umount_key);
            bindings::lockdep_register_key(&mut fs.s_vfs_rename_key);
            bindings::lockdep_register_key(&mut fs.i_lock_key);
            bindings::lockdep_register_key(&mut fs.i_mutex_key);
            bindings::lockdep_register_key(&mut fs.invalidate_lock_key);
            bindings::lockdep_register_key(&mut fs.i_mutex_dir_key);
            for key in &mut fs.s_writers_key {
                bindings::lockdep_register_key(key);
            }
        }

        let ptr = this.fs.get();

        // SAFETY: `ptr` as valid as it points to the `self.fs`.
        let key_guard = ScopeGuard::new(|| unsafe { Self::unregister_keys(ptr) });

        // SAFETY: Pointers stored in `fs` are either static so will live for as long as the
        // registration is active (it is undone in `drop`).
        to_result(unsafe { bindings::register_filesystem(ptr) })?;
        key_guard.dismiss();
        this.is_registered = true;
        Ok(())
    }

    /// Unregisters the lockdep keys in the file system type.
    ///
    /// # Safety
    ///
    /// `fs` must be non-null and valid.
    unsafe fn unregister_keys(fs: *mut bindings::file_system_type) {
        // SAFETY: This block unregisters all fs type keys from lockdep. They must have been
        // registered before.
        unsafe {
            bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).s_lock_key));
            bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).s_umount_key));
            bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).s_vfs_rename_key));
            bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).i_lock_key));
            bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).i_mutex_key));
            bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).invalidate_lock_key));
            bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).i_mutex_dir_key));
            for i in 0..(*fs).s_writers_key.len() {
                bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).s_writers_key[i]));
            }
        }
    }

    unsafe extern "C" fn init_fs_context_callback<T: Type + ?Sized>(
        fc_ptr: *mut bindings::fs_context,
    ) -> core::ffi::c_int {
        from_kernel_result! {
            let data = T::Context::try_new()?;
            // SAFETY: The callback contract guarantees that `fc_ptr` is the only pointer to a
            // newly-allocated fs context, so it is safe to mutably reference it.
            let fc = unsafe { &mut *fc_ptr };
            fc.fs_private = data.into_pointer() as _;
            fc.ops = &Tables::<T>::CONTEXT;
            Ok(0)
        }
    }

    unsafe extern "C" fn kill_sb_callback<T: Type + ?Sized>(sb_ptr: *mut bindings::super_block) {
        if let Super::BlockDev = T::SUPER_TYPE {
            // SAFETY: When the superblock type is `BlockDev`, we have a block device so it's safe
            // to call `kill_block_super`. Additionally, the callback contract guarantees that
            // `sb_ptr` is valid.
            unsafe { bindings::kill_block_super(sb_ptr) }
        } else {
            // SAFETY: We always call a `get_tree_nodev` variant from `get_tree_callback` without a
            // device when `T::SUPER_TYPE` is not `BlockDev`, so we never have a device in such
            // cases, therefore it is ok to call the function below. Additionally, the callback
            // contract guarantees that `sb_ptr` is valid.
            unsafe { bindings::kill_anon_super(sb_ptr) }
        }

        // SAFETY: The callback contract guarantees that `sb_ptr` is valid.
        let sb = unsafe { &*sb_ptr };

        // SAFETY: The `kill_sb` callback being called implies that the `s_type` field is valid.
        unsafe { Self::unregister_keys(sb.s_type) };

        let ptr = sb.s_fs_info;
        if !ptr.is_null() {
            // SAFETY: The only place where `s_fs_info` is assigned is `NewSuperBlock::init`, where
            // it's initialised with the result of a `to_pointer` call. We checked above that ptr
            // is non-null because it would be null if we never reached the point where we init the
            // field.
            unsafe { T::Data::from_pointer(ptr) };
        }
    }
}

impl Drop for Registration {
    fn drop(&mut self) {
        if self.is_registered {
            // SAFETY: When `is_registered` is `true`, a previous call to `register_filesystem` has
            // succeeded, so it is safe to unregister here.
            unsafe { bindings::unregister_filesystem(self.fs.get()) };
        }
    }
}

/// State of [`NewSuperBlock`] that indicates that [`NewSuperBlock::init`] needs to be called
/// eventually.
pub struct NeedsInit;

/// State of [`NewSuperBlock`] that indicates that [`NewSuperBlock::init_root`] needs to be called
/// eventually.
pub struct NeedsRoot;

/// Required superblock parameters.
///
/// This is used in [`NewSuperBlock::init`].
pub struct SuperParams {
    /// The magic number of the superblock.
    pub magic: u32,

    /// The size of a block in powers of 2 (i.e., for a value of `n`, the size is `2^n`.
    pub blocksize_bits: u8,

    /// Maximum size of a file.
    pub maxbytes: i64,

    /// Granularity of c/m/atime in ns (cannot be worse than a second).
    pub time_gran: u32,
}

impl SuperParams {
    /// Default value for instances of [`SuperParams`].
    pub const DEFAULT: Self = Self {
        magic: 0,
        blocksize_bits: crate::PAGE_SIZE as _,
        maxbytes: bindings::MAX_LFS_FILESIZE,
        time_gran: 1,
    };
}

/// A superblock that is still being initialised.
///
/// It uses type states to ensure that callers use the right sequence of calls.
///
/// # Invariants
///
/// The superblock is a newly-created one and this is the only active pointer to it.
pub struct NewSuperBlock<'a, T: Type + ?Sized, S = NeedsInit> {
    sb: *mut bindings::super_block,
    _p: PhantomData<(&'a T, S)>,
}

impl<'a, T: Type + ?Sized> NewSuperBlock<'a, T, NeedsInit> {
    /// Creates a new instance of [`NewSuperBlock`].
    ///
    /// # Safety
    ///
    /// `sb` must point to a newly-created superblock and it must be the only active pointer to it.
    unsafe fn new(sb: *mut bindings::super_block) -> Self {
        // INVARIANT: The invariants are satisfied by the safety requirements of this function.
        Self {
            sb,
            _p: PhantomData,
        }
    }

    /// Initialises the superblock so that it transitions to the [`NeedsRoot`] type state.
    pub fn init(
        self,
        data: T::Data,
        params: &SuperParams,
    ) -> Result<NewSuperBlock<'a, T, NeedsRoot>> {
        // SAFETY: The type invariant guarantees that `self.sb` is the only pointer to a
        // newly-allocated superblock, so it is safe to mutably reference it.
        let sb = unsafe { &mut *self.sb };

        sb.s_magic = params.magic as _;
        sb.s_op = &Tables::<T>::SUPER_BLOCK;
        sb.s_maxbytes = params.maxbytes;
        sb.s_time_gran = params.time_gran;
        sb.s_blocksize_bits = params.blocksize_bits;
        sb.s_blocksize = 1;
        if sb.s_blocksize.leading_zeros() < params.blocksize_bits.into() {
            return Err(EINVAL);
        }
        sb.s_blocksize = 1 << sb.s_blocksize_bits;

        // Keyed file systems already have `s_fs_info` initialised.
        let info = data.into_pointer() as *mut _;
        if let Super::Keyed = T::SUPER_TYPE {
            // SAFETY: We just called `into_pointer` above.
            unsafe { T::Data::from_pointer(info) };

            if sb.s_fs_info != info {
                return Err(EINVAL);
            }
        } else {
            sb.s_fs_info = info;
        }

        Ok(NewSuperBlock {
            sb: self.sb,
            _p: PhantomData,
        })
    }
}

impl<'a, T: Type + ?Sized> NewSuperBlock<'a, T, NeedsRoot> {
    /// Initialises the root of the superblock.
    pub fn init_root(self) -> Result<&'a SuperBlock<T>> {
        // The following is temporary code to create the root inode and dentry. It will be replaced
        // once we allow inodes and dentries to be created directly from Rust code.

        // SAFETY: `sb` is initialised (`NeedsRoot` typestate implies it), so it is safe to pass it
        // to `new_inode`.
        let inode = unsafe { bindings::new_inode(self.sb) };
        if inode.is_null() {
            return Err(ENOMEM);
        }

        {
            // SAFETY: This is a newly-created inode. No other references to it exist, so it is
            // safe to mutably dereference it.
            let inode = unsafe { &mut *inode };

            // SAFETY: `current_time` requires that `inode.sb` be valid, which is the case here
            // since we allocated the inode through the superblock.
            let time = unsafe { bindings::current_time(inode) };
            inode.i_ino = 1;
            inode.i_mode = (bindings::S_IFDIR | 0o755) as _;
            inode.i_mtime = time;
            inode.i_atime = time;
            inode.i_ctime = time;

            // SAFETY: `simple_dir_operations` never changes, it's safe to reference it.
            inode.__bindgen_anon_3.i_fop = unsafe { &bindings::simple_dir_operations };

            // SAFETY: `simple_dir_inode_operations` never changes, it's safe to reference it.
            inode.i_op = unsafe { &bindings::simple_dir_inode_operations };

            // SAFETY: `inode` is valid for write.
            unsafe { bindings::set_nlink(inode, 2) };
        }

        // SAFETY: `d_make_root` requires that `inode` be valid and referenced, which is the
        // case for this call.
        //
        // It takes over the inode, even on failure, so we don't need to clean it up.
        let dentry = unsafe { bindings::d_make_root(inode) };
        if dentry.is_null() {
            return Err(ENOMEM);
        }

        // SAFETY: The typestate guarantees that `self.sb` is valid.
        unsafe { (*self.sb).s_root = dentry };

        // SAFETY: The typestate guarantees that `self.sb` is initialised and we just finished
        // setting its root, so it's a fully ready superblock.
        Ok(unsafe { &mut *self.sb.cast() })
    }
}

/// A file system super block.
///
/// Wraps the kernel's `struct super_block`.
#[repr(transparent)]
pub struct SuperBlock<T: Type + ?Sized>(
    pub(crate) UnsafeCell<bindings::super_block>,
    PhantomData<T>,
);

/// Wraps the kernel's `struct inode`.
///
/// # Invariants
///
/// Instances of this type are always ref-counted, that is, a call to `ihold` ensures that the
/// allocation remains valid at least until the matching call to `iput`.
#[repr(transparent)]
pub struct INode(pub(crate) UnsafeCell<bindings::inode>);

// SAFETY: The type invariants guarantee that `INode` is always ref-counted.
unsafe impl AlwaysRefCounted for INode {
    fn inc_ref(&self) {
        // SAFETY: The existence of a shared reference means that the refcount is nonzero.
        unsafe { bindings::ihold(self.0.get()) };
    }

    unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
        // SAFETY: The safety requirements guarantee that the refcount is nonzero.
        unsafe { bindings::iput(obj.cast().as_ptr()) }
    }
}

/// Wraps the kernel's `struct dentry`.
///
/// # Invariants
///
/// Instances of this type are always ref-counted, that is, a call to `dget` ensures that the
/// allocation remains valid at least until the matching call to `dput`.
#[repr(transparent)]
pub struct DEntry(pub(crate) UnsafeCell<bindings::dentry>);

// SAFETY: The type invariants guarantee that `DEntry` is always ref-counted.
unsafe impl AlwaysRefCounted for DEntry {
    fn inc_ref(&self) {
        // SAFETY: The existence of a shared reference means that the refcount is nonzero.
        unsafe { bindings::dget(self.0.get()) };
    }

    unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
        // SAFETY: The safety requirements guarantee that the refcount is nonzero.
        unsafe { bindings::dput(obj.cast().as_ptr()) }
    }
}

/// Wraps the kernel's `struct filename`.
#[repr(transparent)]
pub struct Filename(pub(crate) UnsafeCell<bindings::filename>);

impl Filename {
    /// Creates a reference to a [`Filename`] from a valid pointer.
    ///
    /// # Safety
    ///
    /// The caller must ensure that `ptr` is valid and remains valid for the lifetime of the
    /// returned [`Filename`] instance.
    pub(crate) unsafe fn from_ptr<'a>(ptr: *const bindings::filename) -> &'a Filename {
        // SAFETY: The safety requirements guarantee the validity of the dereference, while the
        // `Filename` type being transparent makes the cast ok.
        unsafe { &*ptr.cast() }
    }
}

/// Kernel module that exposes a single file system implemented by `T`.
pub struct Module<T: Type> {
    _fs: Pin<Box<Registration>>,
    _p: PhantomData<T>,
}

impl<T: Type + Sync> crate::Module for Module<T> {
    fn init(_name: &'static CStr, module: &'static ThisModule) -> Result<Self> {
        let mut reg = Pin::from(Box::try_new(Registration::new())?);
        reg.as_mut().register::<T>(module)?;
        Ok(Self {
            _fs: reg,
            _p: PhantomData,
        })
    }
}

/// Declares a kernel module that exposes a single file system.
///
/// The `type` argument must be a type which implements the [`Type`] trait. Also accepts various
/// forms of kernel metadata.
///
/// # Examples
///
/// ```ignore
/// use kernel::prelude::*;
/// use kernel::{c_str, fs};
///
/// module_fs! {
///     type: MyFs,
///     name: "my_fs_kernel_module",
///     author: "Rust for Linux Contributors",
///     description: "My very own file system kernel module!",
///     license: "GPL",
/// }
///
/// struct MyFs;
///
/// #[vtable]
/// impl fs::Context<Self> for MyFs {
///     type Data = ();
///     fn try_new() -> Result {
///         Ok(())
///     }
/// }
///
/// impl fs::Type for MyFs {
///     type Context = Self;
///     const SUPER_TYPE: fs::Super = fs::Super::Independent;
///     const NAME: &'static CStr = c_str!("example");
///     const FLAGS: i32 = 0;
///
///     fn fill_super(_data: (), sb: fs::NewSuperBlock<'_, Self>) -> Result<&fs::SuperBlock<Self>> {
///         let sb = sb.init(
///             (),
///             &fs::SuperParams {
///                 magic: 0x6578616d,
///                 ..fs::SuperParams::DEFAULT
///             },
///         )?;
///         let sb = sb.init_root()?;
///         Ok(sb)
///     }
/// }
/// ```
#[macro_export]
macro_rules! module_fs {
    (type: $type:ty, $($f:tt)*) => {
        type ModuleType = $crate::fs::Module<$type>;
        $crate::macros::module! {
            type: ModuleType,
            $($f)*
        }
    }
}