1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
// SPDX-License-Identifier: GPL-2.0
//! Memory-mapped IO.
//!
//! C header: [`include/asm-generic/io.h`](../../../../include/asm-generic/io.h)
#![allow(dead_code)]
use crate::{bindings, error::code::*, error::Result};
use core::convert::TryInto;
/// The type of `Resource`.
pub enum IoResource {
/// i/o memory
Mem = bindings::IORESOURCE_MEM as _,
}
/// Represents a memory resource.
pub struct Resource {
offset: bindings::resource_size_t,
size: bindings::resource_size_t,
flags: core::ffi::c_ulong,
}
impl Resource {
pub(crate) fn new(
start: bindings::resource_size_t,
end: bindings::resource_size_t,
flags: core::ffi::c_ulong,
) -> Option<Self> {
if start == 0 {
return None;
}
Some(Self {
offset: start,
size: end.checked_sub(start)?.checked_add(1)?,
flags,
})
}
}
/// Represents a memory block of at least `SIZE` bytes.
///
/// # Invariants
///
/// `ptr` is a non-null and valid address of at least `SIZE` bytes and returned by an `ioremap`
/// variant. `ptr` is also 8-byte aligned.
///
/// # Examples
///
/// ```
/// # use kernel::prelude::*;
/// use kernel::io_mem::{IoMem, Resource};
///
/// fn test(res: Resource) -> Result {
/// // Create an io mem block of at least 100 bytes.
/// // SAFETY: No DMA operations are initiated through `mem`.
/// let mem = unsafe { IoMem::<100>::try_new(res) }?;
///
/// // Read one byte from offset 10.
/// let v = mem.readb(10);
///
/// // Write value to offset 20.
/// mem.writeb(v, 20);
///
/// Ok(())
/// }
/// ```
pub struct IoMem<const SIZE: usize> {
ptr: usize,
}
macro_rules! define_read {
($(#[$attr:meta])* $name:ident, $try_name:ident, $type_name:ty) => {
/// Reads IO data from the given offset known, at compile time.
///
/// If the offset is not known at compile time, the build will fail.
$(#[$attr])*
#[inline]
pub fn $name(&self, offset: usize) -> $type_name {
Self::check_offset::<$type_name>(offset);
let ptr = self.ptr.wrapping_add(offset);
// SAFETY: The type invariants guarantee that `ptr` is a valid pointer. The check above
// guarantees that the code won't build if `offset` makes the read go out of bounds
// (including the type size).
unsafe { bindings::$name(ptr as _) }
}
/// Reads IO data from the given offset.
///
/// It fails if/when the offset (plus the type size) is out of bounds.
$(#[$attr])*
pub fn $try_name(&self, offset: usize) -> Result<$type_name> {
if !Self::offset_ok::<$type_name>(offset) {
return Err(EINVAL);
}
let ptr = self.ptr.wrapping_add(offset);
// SAFETY: The type invariants guarantee that `ptr` is a valid pointer. The check above
// returns an error if `offset` would make the read go out of bounds (including the
// type size).
Ok(unsafe { bindings::$name(ptr as _) })
}
};
}
macro_rules! define_write {
($(#[$attr:meta])* $name:ident, $try_name:ident, $type_name:ty) => {
/// Writes IO data to the given offset, known at compile time.
///
/// If the offset is not known at compile time, the build will fail.
$(#[$attr])*
#[inline]
pub fn $name(&self, value: $type_name, offset: usize) {
Self::check_offset::<$type_name>(offset);
let ptr = self.ptr.wrapping_add(offset);
// SAFETY: The type invariants guarantee that `ptr` is a valid pointer. The check above
// guarantees that the code won't link if `offset` makes the write go out of bounds
// (including the type size).
unsafe { bindings::$name(value, ptr as _) }
}
/// Writes IO data to the given offset.
///
/// It fails if/when the offset (plus the type size) is out of bounds.
$(#[$attr])*
pub fn $try_name(&self, value: $type_name, offset: usize) -> Result {
if !Self::offset_ok::<$type_name>(offset) {
return Err(EINVAL);
}
let ptr = self.ptr.wrapping_add(offset);
// SAFETY: The type invariants guarantee that `ptr` is a valid pointer. The check above
// returns an error if `offset` would make the write go out of bounds (including the
// type size).
unsafe { bindings::$name(value, ptr as _) };
Ok(())
}
};
}
impl<const SIZE: usize> IoMem<SIZE> {
/// Tries to create a new instance of a memory block.
///
/// The resource described by `res` is mapped into the CPU's address space so that it can be
/// accessed directly. It is also consumed by this function so that it can't be mapped again
/// to a different address.
///
/// # Safety
///
/// Callers must ensure that either (a) the resulting interface cannot be used to initiate DMA
/// operations, or (b) that DMA operations initiated via the returned interface use DMA handles
/// allocated through the `dma` module.
pub unsafe fn try_new(res: Resource) -> Result<Self> {
// Check that the resource has at least `SIZE` bytes in it.
if res.size < SIZE.try_into()? {
return Err(EINVAL);
}
// To be able to check pointers at compile time based only on offsets, we need to guarantee
// that the base pointer is minimally aligned. So we conservatively expect at least 8 bytes.
if res.offset % 8 != 0 {
crate::pr_err!("Physical address is not 64-bit aligned: {:x}", res.offset);
return Err(EDOM);
}
// Try to map the resource.
// SAFETY: Just mapping the memory range.
let addr = if res.flags & (bindings::IORESOURCE_MEM_NONPOSTED as core::ffi::c_ulong) != 0 {
unsafe { bindings::ioremap_np(res.offset, res.size as _) }
} else {
unsafe { bindings::ioremap(res.offset, res.size as _) }
};
if addr.is_null() {
Err(ENOMEM)
} else {
// INVARIANT: `addr` is non-null and was returned by `ioremap`, so it is valid. It is
// also 8-byte aligned because we checked it above.
Ok(Self { ptr: addr as usize })
}
}
#[inline]
const fn offset_ok<T>(offset: usize) -> bool {
let type_size = core::mem::size_of::<T>();
if let Some(end) = offset.checked_add(type_size) {
end <= SIZE && offset % type_size == 0
} else {
false
}
}
fn offset_ok_of_val<T: ?Sized>(offset: usize, value: &T) -> bool {
let value_size = core::mem::size_of_val(value);
let value_alignment = core::mem::align_of_val(value);
if let Some(end) = offset.checked_add(value_size) {
end <= SIZE && offset % value_alignment == 0
} else {
false
}
}
#[inline]
const fn check_offset<T>(offset: usize) {
crate::build_assert!(Self::offset_ok::<T>(offset), "IoMem offset overflow");
}
/// Copy memory block from an i/o memory by filling the specified buffer with it.
///
/// # Examples
/// ```
/// use kernel::io_mem::{self, IoMem, Resource};
///
/// fn test(res: Resource) -> Result {
/// // Create an i/o memory block of at least 100 bytes.
/// let mem = unsafe { IoMem::<100>::try_new(res) }?;
///
/// let mut buffer: [u8; 32] = [0; 32];
///
/// // Memcpy 16 bytes from an offset 10 of i/o memory block into the buffer.
/// mem.try_memcpy_fromio(&mut buffer[..16], 10)?;
///
/// Ok(())
/// }
/// ```
pub fn try_memcpy_fromio(&self, buffer: &mut [u8], offset: usize) -> Result {
if !Self::offset_ok_of_val(offset, buffer) {
return Err(EINVAL);
}
let ptr = self.ptr.wrapping_add(offset);
// SAFETY:
// - The type invariants guarantee that `ptr` is a valid pointer.
// - The bounds of `buffer` are checked with a call to `offset_ok_of_val()`.
unsafe {
bindings::memcpy_fromio(
buffer.as_mut_ptr() as *mut _,
ptr as *const _,
buffer.len() as _,
)
};
Ok(())
}
define_read!(readb, try_readb, u8);
define_read!(readw, try_readw, u16);
define_read!(readl, try_readl, u32);
define_read!(
#[cfg(CONFIG_64BIT)]
readq,
try_readq,
u64
);
define_read!(readb_relaxed, try_readb_relaxed, u8);
define_read!(readw_relaxed, try_readw_relaxed, u16);
define_read!(readl_relaxed, try_readl_relaxed, u32);
define_read!(
#[cfg(CONFIG_64BIT)]
readq_relaxed,
try_readq_relaxed,
u64
);
define_write!(writeb, try_writeb, u8);
define_write!(writew, try_writew, u16);
define_write!(writel, try_writel, u32);
define_write!(
#[cfg(CONFIG_64BIT)]
writeq,
try_writeq,
u64
);
define_write!(writeb_relaxed, try_writeb_relaxed, u8);
define_write!(writew_relaxed, try_writew_relaxed, u16);
define_write!(writel_relaxed, try_writel_relaxed, u32);
define_write!(
#[cfg(CONFIG_64BIT)]
writeq_relaxed,
try_writeq_relaxed,
u64
);
}
impl<const SIZE: usize> Drop for IoMem<SIZE> {
fn drop(&mut self) {
// SAFETY: By the type invariant, `self.ptr` is a value returned by a previous successful
// call to `ioremap`.
unsafe { bindings::iounmap(self.ptr as _) };
}
}
|