1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
|
// SPDX-License-Identifier: GPL-2.0
//! A kernel spinlock.
//!
//! This module allows Rust code to use the kernel's [`struct spinlock`].
//!
//! See <https://www.kernel.org/doc/Documentation/locking/spinlocks.txt>.
use super::{
mutex::EmptyGuardContext, Guard, Lock, LockClassKey, LockFactory, LockInfo, LockIniter,
WriteLock,
};
use crate::{bindings, str::CStr, Opaque, True};
use core::{cell::UnsafeCell, marker::PhantomPinned, pin::Pin};
/// Safely initialises a [`SpinLock`] with the given name, generating a new lock class.
#[macro_export]
macro_rules! spinlock_init {
($spinlock:expr, $name:literal) => {
$crate::init_with_lockdep!($spinlock, $name)
};
}
/// Exposes the kernel's [`spinlock_t`]. When multiple CPUs attempt to lock the same spinlock, only
/// one at a time is allowed to progress, the others will block (spinning) until the spinlock is
/// unlocked, at which point another CPU will be allowed to make progress.
///
/// A [`SpinLock`] must first be initialised with a call to [`SpinLock::init_lock`] before it can be
/// used. The [`spinlock_init`] macro is provided to automatically assign a new lock class to a
/// spinlock instance.
///
/// There are two ways to acquire the lock:
/// - [`SpinLock::lock`], which doesn't manage interrupt state, so it should be used in only two
/// cases: (a) when the caller knows that interrupts are disabled, or (b) when callers never use
/// it in atomic context (e.g., interrupt handlers), in which case it is ok for interrupts to be
/// enabled.
/// - [`SpinLock::lock_irqdisable`], which disables interrupts if they are enabled before
/// acquiring the lock. When the lock is released, the interrupt state is automatically returned
/// to its value before [`SpinLock::lock_irqdisable`] was called.
///
/// # Examples
///
/// ```
/// # use kernel::sync::SpinLock;
/// # use core::pin::Pin;
///
/// struct Example {
/// a: u32,
/// b: u32,
/// }
///
/// // Function that acquires spinlock without changing interrupt state.
/// fn lock_example(value: &SpinLock<Example>) {
/// let mut guard = value.lock();
/// guard.a = 10;
/// guard.b = 20;
/// }
///
/// // Function that acquires spinlock and disables interrupts while holding it.
/// fn lock_irqdisable_example(value: &SpinLock<Example>) {
/// let mut guard = value.lock_irqdisable();
/// guard.a = 30;
/// guard.b = 40;
/// }
///
/// // Initialises a spinlock.
/// // SAFETY: `spinlock_init` is called below.
/// let mut value = unsafe { SpinLock::new(Example { a: 1, b: 2 }) };
/// // SAFETY: We don't move `value`.
/// kernel::spinlock_init!(unsafe { Pin::new_unchecked(&mut value) }, "value");
///
/// // Calls the example functions.
/// assert_eq!(value.lock().a, 1);
/// lock_example(&value);
/// assert_eq!(value.lock().a, 10);
/// lock_irqdisable_example(&value);
/// assert_eq!(value.lock().a, 30);
/// ```
///
/// [`spinlock_t`]: ../../../include/linux/spinlock.h
pub struct SpinLock<T: ?Sized> {
spin_lock: Opaque<bindings::spinlock>,
/// Spinlocks are architecture-defined. So we conservatively require them to be pinned in case
/// some architecture uses self-references now or in the future.
_pin: PhantomPinned,
data: UnsafeCell<T>,
}
// SAFETY: `SpinLock` can be transferred across thread boundaries iff the data it protects can.
unsafe impl<T: ?Sized + Send> Send for SpinLock<T> {}
// SAFETY: `SpinLock` serialises the interior mutability it provides, so it is `Sync` as long as the
// data it protects is `Send`.
unsafe impl<T: ?Sized + Send> Sync for SpinLock<T> {}
impl<T> SpinLock<T> {
/// Constructs a new spinlock.
///
/// # Safety
///
/// The caller must call [`SpinLock::init_lock`] before using the spinlock.
pub const unsafe fn new(t: T) -> Self {
Self {
spin_lock: Opaque::uninit(),
data: UnsafeCell::new(t),
_pin: PhantomPinned,
}
}
}
impl<T: ?Sized> SpinLock<T> {
/// Locks the spinlock and gives the caller access to the data protected by it. Only one thread
/// at a time is allowed to access the protected data.
pub fn lock(&self) -> Guard<'_, Self, WriteLock> {
let ctx = <Self as Lock<WriteLock>>::lock_noguard(self);
// SAFETY: The spinlock was just acquired.
unsafe { Guard::new(self, ctx) }
}
/// Locks the spinlock and gives the caller access to the data protected by it. Additionally it
/// disables interrupts (if they are enabled).
///
/// When the lock in unlocked, the interrupt state (enabled/disabled) is restored.
pub fn lock_irqdisable(&self) -> Guard<'_, Self, DisabledInterrupts> {
let ctx = <Self as Lock<DisabledInterrupts>>::lock_noguard(self);
// SAFETY: The spinlock was just acquired.
unsafe { Guard::new(self, ctx) }
}
}
impl<T> LockFactory for SpinLock<T> {
type LockedType<U> = SpinLock<U>;
unsafe fn new_lock<U>(data: U) -> SpinLock<U> {
// SAFETY: The safety requirements of `new_lock` also require that `init_lock` be called.
unsafe { SpinLock::new(data) }
}
}
impl<T> LockIniter for SpinLock<T> {
fn init_lock(self: Pin<&mut Self>, name: &'static CStr, key: &'static LockClassKey) {
unsafe { bindings::__spin_lock_init(self.spin_lock.get(), name.as_char_ptr(), key.get()) };
}
}
/// A type state indicating that interrupts were disabled.
pub struct DisabledInterrupts;
impl LockInfo for DisabledInterrupts {
type Writable = True;
}
// SAFETY: The underlying kernel `spinlock_t` object ensures mutual exclusion.
unsafe impl<T: ?Sized> Lock for SpinLock<T> {
type Inner = T;
type GuardContext = EmptyGuardContext;
fn lock_noguard(&self) -> EmptyGuardContext {
// SAFETY: `spin_lock` points to valid memory.
unsafe { bindings::spin_lock(self.spin_lock.get()) };
EmptyGuardContext
}
unsafe fn unlock(&self, _: &mut EmptyGuardContext) {
// SAFETY: The safety requirements of the function ensure that the spinlock is owned by
// the caller.
unsafe { bindings::spin_unlock(self.spin_lock.get()) }
}
fn locked_data(&self) -> &UnsafeCell<T> {
&self.data
}
}
// SAFETY: The underlying kernel `spinlock_t` object ensures mutual exclusion.
unsafe impl<T: ?Sized> Lock<DisabledInterrupts> for SpinLock<T> {
type Inner = T;
type GuardContext = core::ffi::c_ulong;
fn lock_noguard(&self) -> core::ffi::c_ulong {
// SAFETY: `spin_lock` points to valid memory.
unsafe { bindings::spin_lock_irqsave(self.spin_lock.get()) }
}
unsafe fn unlock(&self, ctx: &mut core::ffi::c_ulong) {
// SAFETY: The safety requirements of the function ensure that the spinlock is owned by
// the caller.
unsafe { bindings::spin_unlock_irqrestore(self.spin_lock.get(), *ctx) }
}
fn locked_data(&self) -> &UnsafeCell<T> {
&self.data
}
}
/// Safely initialises a [`RawSpinLock`] with the given name, generating a new lock class.
#[macro_export]
macro_rules! rawspinlock_init {
($spinlock:expr, $name:literal) => {
$crate::init_with_lockdep!($spinlock, $name)
};
}
/// Exposes the kernel's [`raw_spinlock_t`].
///
/// It is very similar to [`SpinLock`], except that it is guaranteed not to sleep even on RT
/// variants of the kernel.
///
/// # Examples
///
/// ```
/// # use kernel::sync::RawSpinLock;
/// # use core::pin::Pin;
///
/// struct Example {
/// a: u32,
/// b: u32,
/// }
///
/// // Function that acquires the raw spinlock without changing interrupt state.
/// fn lock_example(value: &RawSpinLock<Example>) {
/// let mut guard = value.lock();
/// guard.a = 10;
/// guard.b = 20;
/// }
///
/// // Function that acquires the raw spinlock and disables interrupts while holding it.
/// fn lock_irqdisable_example(value: &RawSpinLock<Example>) {
/// let mut guard = value.lock_irqdisable();
/// guard.a = 30;
/// guard.b = 40;
/// }
///
/// // Initialises a raw spinlock and calls the example functions.
/// fn spinlock_example() {
/// // SAFETY: `rawspinlock_init` is called below.
/// let mut value = unsafe { RawSpinLock::new(Example { a: 1, b: 2 }) };
/// // SAFETY: We don't move `value`.
/// kernel::rawspinlock_init!(unsafe { Pin::new_unchecked(&mut value) }, "value");
/// lock_example(&value);
/// lock_irqdisable_example(&value);
/// }
/// ```
///
/// [`raw_spinlock_t`]: ../../../include/linux/spinlock.h
pub struct RawSpinLock<T: ?Sized> {
spin_lock: Opaque<bindings::raw_spinlock>,
// Spinlocks are architecture-defined. So we conservatively require them to be pinned in case
// some architecture uses self-references now or in the future.
_pin: PhantomPinned,
data: UnsafeCell<T>,
}
// SAFETY: `RawSpinLock` can be transferred across thread boundaries iff the data it protects can.
unsafe impl<T: ?Sized + Send> Send for RawSpinLock<T> {}
// SAFETY: `RawSpinLock` serialises the interior mutability it provides, so it is `Sync` as long as
// the data it protects is `Send`.
unsafe impl<T: ?Sized + Send> Sync for RawSpinLock<T> {}
impl<T> RawSpinLock<T> {
/// Constructs a new raw spinlock.
///
/// # Safety
///
/// The caller must call [`RawSpinLock::init_lock`] before using the raw spinlock.
pub const unsafe fn new(t: T) -> Self {
Self {
spin_lock: Opaque::uninit(),
data: UnsafeCell::new(t),
_pin: PhantomPinned,
}
}
}
impl<T: ?Sized> RawSpinLock<T> {
/// Locks the raw spinlock and gives the caller access to the data protected by it. Only one
/// thread at a time is allowed to access the protected data.
pub fn lock(&self) -> Guard<'_, Self, WriteLock> {
let ctx = <Self as Lock<WriteLock>>::lock_noguard(self);
// SAFETY: The raw spinlock was just acquired.
unsafe { Guard::new(self, ctx) }
}
/// Locks the raw spinlock and gives the caller access to the data protected by it.
/// Additionally it disables interrupts (if they are enabled).
///
/// When the lock in unlocked, the interrupt state (enabled/disabled) is restored.
pub fn lock_irqdisable(&self) -> Guard<'_, Self, DisabledInterrupts> {
let ctx = <Self as Lock<DisabledInterrupts>>::lock_noguard(self);
// SAFETY: The raw spinlock was just acquired.
unsafe { Guard::new(self, ctx) }
}
}
impl<T> LockFactory for RawSpinLock<T> {
type LockedType<U> = RawSpinLock<U>;
unsafe fn new_lock<U>(data: U) -> RawSpinLock<U> {
// SAFETY: The safety requirements of `new_lock` also require that `init_lock` be called.
unsafe { RawSpinLock::new(data) }
}
}
impl<T> LockIniter for RawSpinLock<T> {
fn init_lock(self: Pin<&mut Self>, name: &'static CStr, key: &'static LockClassKey) {
unsafe {
bindings::_raw_spin_lock_init(self.spin_lock.get(), name.as_char_ptr(), key.get())
};
}
}
// SAFETY: The underlying kernel `raw_spinlock_t` object ensures mutual exclusion.
unsafe impl<T: ?Sized> Lock for RawSpinLock<T> {
type Inner = T;
type GuardContext = EmptyGuardContext;
fn lock_noguard(&self) -> EmptyGuardContext {
// SAFETY: `spin_lock` points to valid memory.
unsafe { bindings::raw_spin_lock(self.spin_lock.get()) };
EmptyGuardContext
}
unsafe fn unlock(&self, _: &mut EmptyGuardContext) {
// SAFETY: The safety requirements of the function ensure that the raw spinlock is owned by
// the caller.
unsafe { bindings::raw_spin_unlock(self.spin_lock.get()) };
}
fn locked_data(&self) -> &UnsafeCell<T> {
&self.data
}
}
// SAFETY: The underlying kernel `raw_spinlock_t` object ensures mutual exclusion.
unsafe impl<T: ?Sized> Lock<DisabledInterrupts> for RawSpinLock<T> {
type Inner = T;
type GuardContext = core::ffi::c_ulong;
fn lock_noguard(&self) -> core::ffi::c_ulong {
// SAFETY: `spin_lock` points to valid memory.
unsafe { bindings::raw_spin_lock_irqsave(self.spin_lock.get()) }
}
unsafe fn unlock(&self, ctx: &mut core::ffi::c_ulong) {
// SAFETY: The safety requirements of the function ensure that the raw spinlock is owned by
// the caller.
unsafe { bindings::raw_spin_unlock_irqrestore(self.spin_lock.get(), *ctx) };
}
fn locked_data(&self) -> &UnsafeCell<T> {
&self.data
}
}
|