diff options
Diffstat (limited to 'rust/alloc/ffi/mod.rs')
-rw-r--r-- | rust/alloc/ffi/mod.rs | 93 |
1 files changed, 93 insertions, 0 deletions
diff --git a/rust/alloc/ffi/mod.rs b/rust/alloc/ffi/mod.rs new file mode 100644 index 000000000000..56d429785339 --- /dev/null +++ b/rust/alloc/ffi/mod.rs @@ -0,0 +1,93 @@ +// SPDX-License-Identifier: Apache-2.0 OR MIT + +//! Utilities related to FFI bindings. +//! +//! This module provides utilities to handle data across non-Rust +//! interfaces, like other programming languages and the underlying +//! operating system. It is mainly of use for FFI (Foreign Function +//! Interface) bindings and code that needs to exchange C-like strings +//! with other languages. +//! +//! # Overview +//! +//! Rust represents owned strings with the [`String`] type, and +//! borrowed slices of strings with the [`str`] primitive. Both are +//! always in UTF-8 encoding, and may contain nul bytes in the middle, +//! i.e., if you look at the bytes that make up the string, there may +//! be a `\0` among them. Both `String` and `str` store their length +//! explicitly; there are no nul terminators at the end of strings +//! like in C. +//! +//! C strings are different from Rust strings: +//! +//! * **Encodings** - Rust strings are UTF-8, but C strings may use +//! other encodings. If you are using a string from C, you should +//! check its encoding explicitly, rather than just assuming that it +//! is UTF-8 like you can do in Rust. +//! +//! * **Character size** - C strings may use `char` or `wchar_t`-sized +//! characters; please **note** that C's `char` is different from Rust's. +//! The C standard leaves the actual sizes of those types open to +//! interpretation, but defines different APIs for strings made up of +//! each character type. Rust strings are always UTF-8, so different +//! Unicode characters will be encoded in a variable number of bytes +//! each. The Rust type [`char`] represents a '[Unicode scalar +//! value]', which is similar to, but not the same as, a '[Unicode +//! code point]'. +//! +//! * **Nul terminators and implicit string lengths** - Often, C +//! strings are nul-terminated, i.e., they have a `\0` character at the +//! end. The length of a string buffer is not stored, but has to be +//! calculated; to compute the length of a string, C code must +//! manually call a function like `strlen()` for `char`-based strings, +//! or `wcslen()` for `wchar_t`-based ones. Those functions return +//! the number of characters in the string excluding the nul +//! terminator, so the buffer length is really `len+1` characters. +//! Rust strings don't have a nul terminator; their length is always +//! stored and does not need to be calculated. While in Rust +//! accessing a string's length is an *O*(1) operation (because the +//! length is stored); in C it is an *O*(*n*) operation because the +//! length needs to be computed by scanning the string for the nul +//! terminator. +//! +//! * **Internal nul characters** - When C strings have a nul +//! terminator character, this usually means that they cannot have nul +//! characters in the middle — a nul character would essentially +//! truncate the string. Rust strings *can* have nul characters in +//! the middle, because nul does not have to mark the end of the +//! string in Rust. +//! +//! # Representations of non-Rust strings +//! +//! [`CString`] and [`CStr`] are useful when you need to transfer +//! UTF-8 strings to and from languages with a C ABI, like Python. +//! +//! * **From Rust to C:** [`CString`] represents an owned, C-friendly +//! string: it is nul-terminated, and has no internal nul characters. +//! Rust code can create a [`CString`] out of a normal string (provided +//! that the string doesn't have nul characters in the middle), and +//! then use a variety of methods to obtain a raw <code>\*mut [u8]</code> that can +//! then be passed as an argument to functions which use the C +//! conventions for strings. +//! +//! * **From C to Rust:** [`CStr`] represents a borrowed C string; it +//! is what you would use to wrap a raw <code>\*const [u8]</code> that you got from +//! a C function. A [`CStr`] is guaranteed to be a nul-terminated array +//! of bytes. Once you have a [`CStr`], you can convert it to a Rust +//! <code>&[str]</code> if it's valid UTF-8, or lossily convert it by adding +//! replacement characters. +//! +//! [`String`]: crate::string::String +//! [`CStr`]: core::ffi::CStr + +#![unstable(feature = "alloc_ffi", issue = "94079")] + +#[cfg(bootstrap)] +#[unstable(feature = "cstr_internals", issue = "none")] +pub use self::c_str::CStrExt; +#[unstable(feature = "alloc_c_string", issue = "94079")] +pub use self::c_str::FromVecWithNulError; +#[unstable(feature = "alloc_c_string", issue = "94079")] +pub use self::c_str::{CString, IntoStringError, NulError}; + +mod c_str; |