summaryrefslogtreecommitdiff
path: root/rust/alloc/string.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/alloc/string.rs')
-rw-r--r--rust/alloc/string.rs2944
1 files changed, 2944 insertions, 0 deletions
diff --git a/rust/alloc/string.rs b/rust/alloc/string.rs
new file mode 100644
index 000000000000..2ba7f30a7503
--- /dev/null
+++ b/rust/alloc/string.rs
@@ -0,0 +1,2944 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
+//! A UTF-8โ€“encoded, growable string.
+//!
+//! This module contains the [`String`] type, the [`ToString`] trait for
+//! converting to strings, and several error types that may result from
+//! working with [`String`]s.
+//!
+//! # Examples
+//!
+//! There are multiple ways to create a new [`String`] from a string literal:
+//!
+//! ```
+//! let s = "Hello".to_string();
+//!
+//! let s = String::from("world");
+//! let s: String = "also this".into();
+//! ```
+//!
+//! You can create a new [`String`] from an existing one by concatenating with
+//! `+`:
+//!
+//! ```
+//! let s = "Hello".to_string();
+//!
+//! let message = s + " world!";
+//! ```
+//!
+//! If you have a vector of valid UTF-8 bytes, you can make a [`String`] out of
+//! it. You can do the reverse too.
+//!
+//! ```
+//! let sparkle_heart = vec![240, 159, 146, 150];
+//!
+//! // We know these bytes are valid, so we'll use `unwrap()`.
+//! let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
+//!
+//! assert_eq!("๐Ÿ’–", sparkle_heart);
+//!
+//! let bytes = sparkle_heart.into_bytes();
+//!
+//! assert_eq!(bytes, [240, 159, 146, 150]);
+//! ```
+
+#![stable(feature = "rust1", since = "1.0.0")]
+
+#[cfg(not(no_global_oom_handling))]
+use core::char::{decode_utf16, REPLACEMENT_CHARACTER};
+use core::fmt;
+use core::hash;
+#[cfg(not(no_global_oom_handling))]
+use core::iter::{from_fn, FromIterator};
+use core::iter::FusedIterator;
+#[cfg(not(no_global_oom_handling))]
+use core::ops::Add;
+#[cfg(not(no_global_oom_handling))]
+use core::ops::AddAssign;
+#[cfg(not(no_global_oom_handling))]
+use core::ops::Bound::{Excluded, Included, Unbounded};
+use core::ops::{self, Index, IndexMut, Range, RangeBounds};
+use core::ptr;
+use core::slice;
+#[cfg(not(no_global_oom_handling))]
+use core::str::lossy;
+use core::str::pattern::Pattern;
+
+#[cfg(not(no_global_oom_handling))]
+use crate::borrow::{Cow, ToOwned};
+use crate::boxed::Box;
+use crate::collections::TryReserveError;
+use crate::str::{self, Chars, Utf8Error};
+#[cfg(not(no_global_oom_handling))]
+use crate::str::{from_boxed_utf8_unchecked, FromStr};
+use crate::vec::Vec;
+
+/// A UTF-8โ€“encoded, growable string.
+///
+/// The `String` type is the most common string type that has ownership over the
+/// contents of the string. It has a close relationship with its borrowed
+/// counterpart, the primitive [`str`].
+///
+/// # Examples
+///
+/// You can create a `String` from [a literal string][`&str`] with [`String::from`]:
+///
+/// [`String::from`]: From::from
+///
+/// ```
+/// let hello = String::from("Hello, world!");
+/// ```
+///
+/// You can append a [`char`] to a `String` with the [`push`] method, and
+/// append a [`&str`] with the [`push_str`] method:
+///
+/// ```
+/// let mut hello = String::from("Hello, ");
+///
+/// hello.push('w');
+/// hello.push_str("orld!");
+/// ```
+///
+/// [`push`]: String::push
+/// [`push_str`]: String::push_str
+///
+/// If you have a vector of UTF-8 bytes, you can create a `String` from it with
+/// the [`from_utf8`] method:
+///
+/// ```
+/// // some bytes, in a vector
+/// let sparkle_heart = vec![240, 159, 146, 150];
+///
+/// // We know these bytes are valid, so we'll use `unwrap()`.
+/// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
+///
+/// assert_eq!("๐Ÿ’–", sparkle_heart);
+/// ```
+///
+/// [`from_utf8`]: String::from_utf8
+///
+/// # UTF-8
+///
+/// `String`s are always valid UTF-8. If you need a non-UTF-8 string, consider
+/// [`OsString`]. It is similar, but without the UTF-8 constraint. Because UTF-8
+/// is a variable width encoding, `String`s are typically smaller than an array of
+/// the same `chars`:
+///
+/// ```
+/// use std::mem;
+///
+/// // `s` is ASCII which represents each `char` as one byte
+/// let s = "hello";
+/// assert_eq!(s.len(), 5);
+///
+/// // A `char` array with the same contents would be longer because
+/// // every `char` is four bytes
+/// let s = ['h', 'e', 'l', 'l', 'o'];
+/// let size: usize = s.into_iter().map(|c| mem::size_of_val(&c)).sum();
+/// assert_eq!(size, 20);
+///
+/// // However, for non-ASCII strings, the difference will be smaller
+/// // and sometimes they are the same
+/// let s = "๐Ÿ’–๐Ÿ’–๐Ÿ’–๐Ÿ’–๐Ÿ’–";
+/// assert_eq!(s.len(), 20);
+///
+/// let s = ['๐Ÿ’–', '๐Ÿ’–', '๐Ÿ’–', '๐Ÿ’–', '๐Ÿ’–'];
+/// let size: usize = s.into_iter().map(|c| mem::size_of_val(&c)).sum();
+/// assert_eq!(size, 20);
+/// ```
+///
+/// This raises interesting questions as to how `s[i]` should work.
+/// What should `i` be here? Several options include byte indices and
+/// `char` indices but, because of UTF-8 encoding, only byte indices
+/// would provide constant time indexing. Getting the `i`th `char`, for
+/// example, is available using [`chars`]:
+///
+/// ```
+/// let s = "hello";
+/// let third_character = s.chars().nth(2);
+/// assert_eq!(third_character, Some('l'));
+///
+/// let s = "๐Ÿ’–๐Ÿ’–๐Ÿ’–๐Ÿ’–๐Ÿ’–";
+/// let third_character = s.chars().nth(2);
+/// assert_eq!(third_character, Some('๐Ÿ’–'));
+/// ```
+///
+/// Next, what should `s[i]` return? Because indexing returns a reference
+/// to underlying data it could be `&u8`, `&[u8]`, or something else similar.
+/// Since we're only providing one index, `&u8` makes the most sense but that
+/// might not be what the user expects and can be explicitly achieved with
+/// [`as_bytes()`]:
+///
+/// ```
+/// // The first byte is 104 - the byte value of `'h'`
+/// let s = "hello";
+/// assert_eq!(s.as_bytes()[0], 104);
+/// // or
+/// assert_eq!(s.as_bytes()[0], b'h');
+///
+/// // The first byte is 240 which isn't obviously useful
+/// let s = "๐Ÿ’–๐Ÿ’–๐Ÿ’–๐Ÿ’–๐Ÿ’–";
+/// assert_eq!(s.as_bytes()[0], 240);
+/// ```
+///
+/// Due to these ambiguities/restrictions, indexing with a `usize` is simply
+/// forbidden:
+///
+/// ```compile_fail,E0277
+/// let s = "hello";
+///
+/// // The following will not compile!
+/// println!("The first letter of s is {}", s[0]);
+/// ```
+///
+/// It is more clear, however, how `&s[i..j]` should work (that is,
+/// indexing with a range). It should accept byte indices (to be constant-time)
+/// and return a `&str` which is UTF-8 encoded. This is also called "string slicing".
+/// Note this will panic if the byte indices provided are not character
+/// boundaries - see [`is_char_boundary`] for more details. See the implementations
+/// for [`SliceIndex<str>`] for more details on string slicing. For a non-panicking
+/// version of string slicing, see [`get`].
+///
+/// [`OsString`]: ../../std/ffi/struct.OsString.html "ffi::OsString"
+/// [`SliceIndex<str>`]: core::slice::SliceIndex
+/// [`as_bytes()`]: str::as_bytes
+/// [`get`]: str::get
+/// [`is_char_boundary`]: str::is_char_boundary
+///
+/// The [`bytes`] and [`chars`] methods return iterators over the bytes and
+/// codepoints of the string, respectively. To iterate over codepoints along
+/// with byte indices, use [`char_indices`].
+///
+/// [`bytes`]: str::bytes
+/// [`chars`]: str::chars
+/// [`char_indices`]: str::char_indices
+///
+/// # Deref
+///
+/// `String` implements <code>[Deref]<Target = [str]></code>, and so inherits all of [`str`]'s
+/// methods. In addition, this means that you can pass a `String` to a
+/// function which takes a [`&str`] by using an ampersand (`&`):
+///
+/// ```
+/// fn takes_str(s: &str) { }
+///
+/// let s = String::from("Hello");
+///
+/// takes_str(&s);
+/// ```
+///
+/// This will create a [`&str`] from the `String` and pass it in. This
+/// conversion is very inexpensive, and so generally, functions will accept
+/// [`&str`]s as arguments unless they need a `String` for some specific
+/// reason.
+///
+/// In certain cases Rust doesn't have enough information to make this
+/// conversion, known as [`Deref`] coercion. In the following example a string
+/// slice [`&'a str`][`&str`] implements the trait `TraitExample`, and the function
+/// `example_func` takes anything that implements the trait. In this case Rust
+/// would need to make two implicit conversions, which Rust doesn't have the
+/// means to do. For that reason, the following example will not compile.
+///
+/// ```compile_fail,E0277
+/// trait TraitExample {}
+///
+/// impl<'a> TraitExample for &'a str {}
+///
+/// fn example_func<A: TraitExample>(example_arg: A) {}
+///
+/// let example_string = String::from("example_string");
+/// example_func(&example_string);
+/// ```
+///
+/// There are two options that would work instead. The first would be to
+/// change the line `example_func(&example_string);` to
+/// `example_func(example_string.as_str());`, using the method [`as_str()`]
+/// to explicitly extract the string slice containing the string. The second
+/// way changes `example_func(&example_string);` to
+/// `example_func(&*example_string);`. In this case we are dereferencing a
+/// `String` to a [`str`], then referencing the [`str`] back to
+/// [`&str`]. The second way is more idiomatic, however both work to do the
+/// conversion explicitly rather than relying on the implicit conversion.
+///
+/// # Representation
+///
+/// A `String` is made up of three components: a pointer to some bytes, a
+/// length, and a capacity. The pointer points to an internal buffer `String`
+/// uses to store its data. The length is the number of bytes currently stored
+/// in the buffer, and the capacity is the size of the buffer in bytes. As such,
+/// the length will always be less than or equal to the capacity.
+///
+/// This buffer is always stored on the heap.
+///
+/// You can look at these with the [`as_ptr`], [`len`], and [`capacity`]
+/// methods:
+///
+/// ```
+/// use std::mem;
+///
+/// let story = String::from("Once upon a time...");
+///
+// FIXME Update this when vec_into_raw_parts is stabilized
+/// // Prevent automatically dropping the String's data
+/// let mut story = mem::ManuallyDrop::new(story);
+///
+/// let ptr = story.as_mut_ptr();
+/// let len = story.len();
+/// let capacity = story.capacity();
+///
+/// // story has nineteen bytes
+/// assert_eq!(19, len);
+///
+/// // We can re-build a String out of ptr, len, and capacity. This is all
+/// // unsafe because we are responsible for making sure the components are
+/// // valid:
+/// let s = unsafe { String::from_raw_parts(ptr, len, capacity) } ;
+///
+/// assert_eq!(String::from("Once upon a time..."), s);
+/// ```
+///
+/// [`as_ptr`]: str::as_ptr
+/// [`len`]: String::len
+/// [`capacity`]: String::capacity
+///
+/// If a `String` has enough capacity, adding elements to it will not
+/// re-allocate. For example, consider this program:
+///
+/// ```
+/// let mut s = String::new();
+///
+/// println!("{}", s.capacity());
+///
+/// for _ in 0..5 {
+/// s.push_str("hello");
+/// println!("{}", s.capacity());
+/// }
+/// ```
+///
+/// This will output the following:
+///
+/// ```text
+/// 0
+/// 5
+/// 10
+/// 20
+/// 20
+/// 40
+/// ```
+///
+/// At first, we have no memory allocated at all, but as we append to the
+/// string, it increases its capacity appropriately. If we instead use the
+/// [`with_capacity`] method to allocate the correct capacity initially:
+///
+/// ```
+/// let mut s = String::with_capacity(25);
+///
+/// println!("{}", s.capacity());
+///
+/// for _ in 0..5 {
+/// s.push_str("hello");
+/// println!("{}", s.capacity());
+/// }
+/// ```
+///
+/// [`with_capacity`]: String::with_capacity
+///
+/// We end up with a different output:
+///
+/// ```text
+/// 25
+/// 25
+/// 25
+/// 25
+/// 25
+/// 25
+/// ```
+///
+/// Here, there's no need to allocate more memory inside the loop.
+///
+/// [str]: prim@str "str"
+/// [`str`]: prim@str "str"
+/// [`&str`]: prim@str "&str"
+/// [Deref]: core::ops::Deref "ops::Deref"
+/// [`Deref`]: core::ops::Deref "ops::Deref"
+/// [`as_str()`]: String::as_str
+#[derive(PartialOrd, Eq, Ord)]
+#[cfg_attr(not(test), rustc_diagnostic_item = "String")]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct String {
+ vec: Vec<u8>,
+}
+
+/// A possible error value when converting a `String` from a UTF-8 byte vector.
+///
+/// This type is the error type for the [`from_utf8`] method on [`String`]. It
+/// is designed in such a way to carefully avoid reallocations: the
+/// [`into_bytes`] method will give back the byte vector that was used in the
+/// conversion attempt.
+///
+/// [`from_utf8`]: String::from_utf8
+/// [`into_bytes`]: FromUtf8Error::into_bytes
+///
+/// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
+/// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
+/// an analogue to `FromUtf8Error`, and you can get one from a `FromUtf8Error`
+/// through the [`utf8_error`] method.
+///
+/// [`Utf8Error`]: str::Utf8Error "std::str::Utf8Error"
+/// [`std::str`]: core::str "std::str"
+/// [`&str`]: prim@str "&str"
+/// [`utf8_error`]: FromUtf8Error::utf8_error
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// // some invalid bytes, in a vector
+/// let bytes = vec![0, 159];
+///
+/// let value = String::from_utf8(bytes);
+///
+/// assert!(value.is_err());
+/// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[cfg_attr(not(no_global_oom_handling), derive(Clone))]
+#[derive(Debug, PartialEq, Eq)]
+pub struct FromUtf8Error {
+ bytes: Vec<u8>,
+ error: Utf8Error,
+}
+
+/// A possible error value when converting a `String` from a UTF-16 byte slice.
+///
+/// This type is the error type for the [`from_utf16`] method on [`String`].
+///
+/// [`from_utf16`]: String::from_utf16
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// // ๐„žmu<invalid>ic
+/// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
+/// 0xD800, 0x0069, 0x0063];
+///
+/// assert!(String::from_utf16(v).is_err());
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[derive(Debug)]
+pub struct FromUtf16Error(());
+
+impl String {
+ /// Creates a new empty `String`.
+ ///
+ /// Given that the `String` is empty, this will not allocate any initial
+ /// buffer. While that means that this initial operation is very
+ /// inexpensive, it may cause excessive allocation later when you add
+ /// data. If you have an idea of how much data the `String` will hold,
+ /// consider the [`with_capacity`] method to prevent excessive
+ /// re-allocation.
+ ///
+ /// [`with_capacity`]: String::with_capacity
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = String::new();
+ /// ```
+ #[inline]
+ #[rustc_const_stable(feature = "const_string_new", since = "1.39.0")]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[must_use]
+ pub const fn new() -> String {
+ String { vec: Vec::new() }
+ }
+
+ /// Creates a new empty `String` with a particular capacity.
+ ///
+ /// `String`s have an internal buffer to hold their data. The capacity is
+ /// the length of that buffer, and can be queried with the [`capacity`]
+ /// method. This method creates an empty `String`, but one with an initial
+ /// buffer that can hold `capacity` bytes. This is useful when you may be
+ /// appending a bunch of data to the `String`, reducing the number of
+ /// reallocations it needs to do.
+ ///
+ /// [`capacity`]: String::capacity
+ ///
+ /// If the given capacity is `0`, no allocation will occur, and this method
+ /// is identical to the [`new`] method.
+ ///
+ /// [`new`]: String::new
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::with_capacity(10);
+ ///
+ /// // The String contains no chars, even though it has capacity for more
+ /// assert_eq!(s.len(), 0);
+ ///
+ /// // These are all done without reallocating...
+ /// let cap = s.capacity();
+ /// for _ in 0..10 {
+ /// s.push('a');
+ /// }
+ ///
+ /// assert_eq!(s.capacity(), cap);
+ ///
+ /// // ...but this may make the string reallocate
+ /// s.push('a');
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[must_use]
+ pub fn with_capacity(capacity: usize) -> String {
+ String { vec: Vec::with_capacity(capacity) }
+ }
+
+ // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
+ // required for this method definition, is not available. Since we don't
+ // require this method for testing purposes, I'll just stub it
+ // NB see the slice::hack module in slice.rs for more information
+ #[inline]
+ #[cfg(test)]
+ pub fn from_str(_: &str) -> String {
+ panic!("not available with cfg(test)");
+ }
+
+ /// Converts a vector of bytes to a `String`.
+ ///
+ /// A string ([`String`]) is made of bytes ([`u8`]), and a vector of bytes
+ /// ([`Vec<u8>`]) is made of bytes, so this function converts between the
+ /// two. Not all byte slices are valid `String`s, however: `String`
+ /// requires that it is valid UTF-8. `from_utf8()` checks to ensure that
+ /// the bytes are valid UTF-8, and then does the conversion.
+ ///
+ /// If you are sure that the byte slice is valid UTF-8, and you don't want
+ /// to incur the overhead of the validity check, there is an unsafe version
+ /// of this function, [`from_utf8_unchecked`], which has the same behavior
+ /// but skips the check.
+ ///
+ /// This method will take care to not copy the vector, for efficiency's
+ /// sake.
+ ///
+ /// If you need a [`&str`] instead of a `String`, consider
+ /// [`str::from_utf8`].
+ ///
+ /// The inverse of this method is [`into_bytes`].
+ ///
+ /// # Errors
+ ///
+ /// Returns [`Err`] if the slice is not UTF-8 with a description as to why the
+ /// provided bytes are not UTF-8. The vector you moved in is also included.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// // some bytes, in a vector
+ /// let sparkle_heart = vec![240, 159, 146, 150];
+ ///
+ /// // We know these bytes are valid, so we'll use `unwrap()`.
+ /// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
+ ///
+ /// assert_eq!("๐Ÿ’–", sparkle_heart);
+ /// ```
+ ///
+ /// Incorrect bytes:
+ ///
+ /// ```
+ /// // some invalid bytes, in a vector
+ /// let sparkle_heart = vec![0, 159, 146, 150];
+ ///
+ /// assert!(String::from_utf8(sparkle_heart).is_err());
+ /// ```
+ ///
+ /// See the docs for [`FromUtf8Error`] for more details on what you can do
+ /// with this error.
+ ///
+ /// [`from_utf8_unchecked`]: String::from_utf8_unchecked
+ /// [`Vec<u8>`]: crate::vec::Vec "Vec"
+ /// [`&str`]: prim@str "&str"
+ /// [`into_bytes`]: String::into_bytes
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn from_utf8(vec: Vec<u8>) -> Result<String, FromUtf8Error> {
+ match str::from_utf8(&vec) {
+ Ok(..) => Ok(String { vec }),
+ Err(e) => Err(FromUtf8Error { bytes: vec, error: e }),
+ }
+ }
+
+ /// Converts a slice of bytes to a string, including invalid characters.
+ ///
+ /// Strings are made of bytes ([`u8`]), and a slice of bytes
+ /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts
+ /// between the two. Not all byte slices are valid strings, however: strings
+ /// are required to be valid UTF-8. During this conversion,
+ /// `from_utf8_lossy()` will replace any invalid UTF-8 sequences with
+ /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD], which looks like this: ๏ฟฝ
+ ///
+ /// [byteslice]: prim@slice
+ /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
+ ///
+ /// If you are sure that the byte slice is valid UTF-8, and you don't want
+ /// to incur the overhead of the conversion, there is an unsafe version
+ /// of this function, [`from_utf8_unchecked`], which has the same behavior
+ /// but skips the checks.
+ ///
+ /// [`from_utf8_unchecked`]: String::from_utf8_unchecked
+ ///
+ /// This function returns a [`Cow<'a, str>`]. If our byte slice is invalid
+ /// UTF-8, then we need to insert the replacement characters, which will
+ /// change the size of the string, and hence, require a `String`. But if
+ /// it's already valid UTF-8, we don't need a new allocation. This return
+ /// type allows us to handle both cases.
+ ///
+ /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// // some bytes, in a vector
+ /// let sparkle_heart = vec![240, 159, 146, 150];
+ ///
+ /// let sparkle_heart = String::from_utf8_lossy(&sparkle_heart);
+ ///
+ /// assert_eq!("๐Ÿ’–", sparkle_heart);
+ /// ```
+ ///
+ /// Incorrect bytes:
+ ///
+ /// ```
+ /// // some invalid bytes
+ /// let input = b"Hello \xF0\x90\x80World";
+ /// let output = String::from_utf8_lossy(input);
+ ///
+ /// assert_eq!("Hello ๏ฟฝWorld", output);
+ /// ```
+ #[must_use]
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn from_utf8_lossy(v: &[u8]) -> Cow<'_, str> {
+ let mut iter = lossy::Utf8Lossy::from_bytes(v).chunks();
+
+ let first_valid = if let Some(chunk) = iter.next() {
+ let lossy::Utf8LossyChunk { valid, broken } = chunk;
+ if broken.is_empty() {
+ debug_assert_eq!(valid.len(), v.len());
+ return Cow::Borrowed(valid);
+ }
+ valid
+ } else {
+ return Cow::Borrowed("");
+ };
+
+ const REPLACEMENT: &str = "\u{FFFD}";
+
+ let mut res = String::with_capacity(v.len());
+ res.push_str(first_valid);
+ res.push_str(REPLACEMENT);
+
+ for lossy::Utf8LossyChunk { valid, broken } in iter {
+ res.push_str(valid);
+ if !broken.is_empty() {
+ res.push_str(REPLACEMENT);
+ }
+ }
+
+ Cow::Owned(res)
+ }
+
+ /// Decode a UTF-16โ€“encoded vector `v` into a `String`, returning [`Err`]
+ /// if `v` contains any invalid data.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// // ๐„žmusic
+ /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
+ /// 0x0073, 0x0069, 0x0063];
+ /// assert_eq!(String::from("๐„žmusic"),
+ /// String::from_utf16(v).unwrap());
+ ///
+ /// // ๐„žmu<invalid>ic
+ /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
+ /// 0xD800, 0x0069, 0x0063];
+ /// assert!(String::from_utf16(v).is_err());
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn from_utf16(v: &[u16]) -> Result<String, FromUtf16Error> {
+ // This isn't done via collect::<Result<_, _>>() for performance reasons.
+ // FIXME: the function can be simplified again when #48994 is closed.
+ let mut ret = String::with_capacity(v.len());
+ for c in decode_utf16(v.iter().cloned()) {
+ if let Ok(c) = c {
+ ret.push(c);
+ } else {
+ return Err(FromUtf16Error(()));
+ }
+ }
+ Ok(ret)
+ }
+
+ /// Decode a UTF-16โ€“encoded slice `v` into a `String`, replacing
+ /// invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
+ ///
+ /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
+ /// `from_utf16_lossy` returns a `String` since the UTF-16 to UTF-8
+ /// conversion requires a memory allocation.
+ ///
+ /// [`from_utf8_lossy`]: String::from_utf8_lossy
+ /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
+ /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// // ๐„žmus<invalid>ic<invalid>
+ /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
+ /// 0x0073, 0xDD1E, 0x0069, 0x0063,
+ /// 0xD834];
+ ///
+ /// assert_eq!(String::from("๐„žmus\u{FFFD}ic\u{FFFD}"),
+ /// String::from_utf16_lossy(v));
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[must_use]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn from_utf16_lossy(v: &[u16]) -> String {
+ decode_utf16(v.iter().cloned()).map(|r| r.unwrap_or(REPLACEMENT_CHARACTER)).collect()
+ }
+
+ /// Decomposes a `String` into its raw components.
+ ///
+ /// Returns the raw pointer to the underlying data, the length of
+ /// the string (in bytes), and the allocated capacity of the data
+ /// (in bytes). These are the same arguments in the same order as
+ /// the arguments to [`from_raw_parts`].
+ ///
+ /// After calling this function, the caller is responsible for the
+ /// memory previously managed by the `String`. The only way to do
+ /// this is to convert the raw pointer, length, and capacity back
+ /// into a `String` with the [`from_raw_parts`] function, allowing
+ /// the destructor to perform the cleanup.
+ ///
+ /// [`from_raw_parts`]: String::from_raw_parts
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(vec_into_raw_parts)]
+ /// let s = String::from("hello");
+ ///
+ /// let (ptr, len, cap) = s.into_raw_parts();
+ ///
+ /// let rebuilt = unsafe { String::from_raw_parts(ptr, len, cap) };
+ /// assert_eq!(rebuilt, "hello");
+ /// ```
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
+ pub fn into_raw_parts(self) -> (*mut u8, usize, usize) {
+ self.vec.into_raw_parts()
+ }
+
+ /// Creates a new `String` from a length, capacity, and pointer.
+ ///
+ /// # Safety
+ ///
+ /// This is highly unsafe, due to the number of invariants that aren't
+ /// checked:
+ ///
+ /// * The memory at `buf` needs to have been previously allocated by the
+ /// same allocator the standard library uses, with a required alignment of exactly 1.
+ /// * `length` needs to be less than or equal to `capacity`.
+ /// * `capacity` needs to be the correct value.
+ /// * The first `length` bytes at `buf` need to be valid UTF-8.
+ ///
+ /// Violating these may cause problems like corrupting the allocator's
+ /// internal data structures. For example, it is normally **not** safe to
+ /// build a `String` from a pointer to a C `char` array containing UTF-8
+ /// _unless_ you are certain that array was originally allocated by the
+ /// Rust standard library's allocator.
+ ///
+ /// The ownership of `buf` is effectively transferred to the
+ /// `String` which may then deallocate, reallocate or change the
+ /// contents of memory pointed to by the pointer at will. Ensure
+ /// that nothing else uses the pointer after calling this
+ /// function.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::mem;
+ ///
+ /// unsafe {
+ /// let s = String::from("hello");
+ ///
+ // FIXME Update this when vec_into_raw_parts is stabilized
+ /// // Prevent automatically dropping the String's data
+ /// let mut s = mem::ManuallyDrop::new(s);
+ ///
+ /// let ptr = s.as_mut_ptr();
+ /// let len = s.len();
+ /// let capacity = s.capacity();
+ ///
+ /// let s = String::from_raw_parts(ptr, len, capacity);
+ ///
+ /// assert_eq!(String::from("hello"), s);
+ /// }
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub unsafe fn from_raw_parts(buf: *mut u8, length: usize, capacity: usize) -> String {
+ unsafe { String { vec: Vec::from_raw_parts(buf, length, capacity) } }
+ }
+
+ /// Converts a vector of bytes to a `String` without checking that the
+ /// string contains valid UTF-8.
+ ///
+ /// See the safe version, [`from_utf8`], for more details.
+ ///
+ /// [`from_utf8`]: String::from_utf8
+ ///
+ /// # Safety
+ ///
+ /// This function is unsafe because it does not check that the bytes passed
+ /// to it are valid UTF-8. If this constraint is violated, it may cause
+ /// memory unsafety issues with future users of the `String`, as the rest of
+ /// the standard library assumes that `String`s are valid UTF-8.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// // some bytes, in a vector
+ /// let sparkle_heart = vec![240, 159, 146, 150];
+ ///
+ /// let sparkle_heart = unsafe {
+ /// String::from_utf8_unchecked(sparkle_heart)
+ /// };
+ ///
+ /// assert_eq!("๐Ÿ’–", sparkle_heart);
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub unsafe fn from_utf8_unchecked(bytes: Vec<u8>) -> String {
+ String { vec: bytes }
+ }
+
+ /// Converts a `String` into a byte vector.
+ ///
+ /// This consumes the `String`, so we do not need to copy its contents.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = String::from("hello");
+ /// let bytes = s.into_bytes();
+ ///
+ /// assert_eq!(&[104, 101, 108, 108, 111][..], &bytes[..]);
+ /// ```
+ #[inline]
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn into_bytes(self) -> Vec<u8> {
+ self.vec
+ }
+
+ /// Extracts a string slice containing the entire `String`.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = String::from("foo");
+ ///
+ /// assert_eq!("foo", s.as_str());
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "string_as_str", since = "1.7.0")]
+ pub fn as_str(&self) -> &str {
+ self
+ }
+
+ /// Converts a `String` into a mutable string slice.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("foobar");
+ /// let s_mut_str = s.as_mut_str();
+ ///
+ /// s_mut_str.make_ascii_uppercase();
+ ///
+ /// assert_eq!("FOOBAR", s_mut_str);
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "string_as_str", since = "1.7.0")]
+ pub fn as_mut_str(&mut self) -> &mut str {
+ self
+ }
+
+ /// Appends a given string slice onto the end of this `String`.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("foo");
+ ///
+ /// s.push_str("bar");
+ ///
+ /// assert_eq!("foobar", s);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn push_str(&mut self, string: &str) {
+ self.vec.extend_from_slice(string.as_bytes())
+ }
+
+ /// Copies elements from `src` range to the end of the string.
+ ///
+ /// ## Panics
+ ///
+ /// Panics if the starting point or end point do not lie on a [`char`]
+ /// boundary, or if they're out of bounds.
+ ///
+ /// ## Examples
+ ///
+ /// ```
+ /// #![feature(string_extend_from_within)]
+ /// let mut string = String::from("abcde");
+ ///
+ /// string.extend_from_within(2..);
+ /// assert_eq!(string, "abcdecde");
+ ///
+ /// string.extend_from_within(..2);
+ /// assert_eq!(string, "abcdecdeab");
+ ///
+ /// string.extend_from_within(4..8);
+ /// assert_eq!(string, "abcdecdeabecde");
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[unstable(feature = "string_extend_from_within", issue = "none")]
+ pub fn extend_from_within<R>(&mut self, src: R)
+ where
+ R: RangeBounds<usize>,
+ {
+ let src @ Range { start, end } = slice::range(src, ..self.len());
+
+ assert!(self.is_char_boundary(start));
+ assert!(self.is_char_boundary(end));
+
+ self.vec.extend_from_within(src);
+ }
+
+ /// Returns this `String`'s capacity, in bytes.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = String::with_capacity(10);
+ ///
+ /// assert!(s.capacity() >= 10);
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn capacity(&self) -> usize {
+ self.vec.capacity()
+ }
+
+ /// Ensures that this `String`'s capacity is at least `additional` bytes
+ /// larger than its length.
+ ///
+ /// The capacity may be increased by more than `additional` bytes if it
+ /// chooses, to prevent frequent reallocations.
+ ///
+ /// If you do not want this "at least" behavior, see the [`reserve_exact`]
+ /// method.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity overflows [`usize`].
+ ///
+ /// [`reserve_exact`]: String::reserve_exact
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::new();
+ ///
+ /// s.reserve(10);
+ ///
+ /// assert!(s.capacity() >= 10);
+ /// ```
+ ///
+ /// This might not actually increase the capacity:
+ ///
+ /// ```
+ /// let mut s = String::with_capacity(10);
+ /// s.push('a');
+ /// s.push('b');
+ ///
+ /// // s now has a length of 2 and a capacity of 10
+ /// assert_eq!(2, s.len());
+ /// assert_eq!(10, s.capacity());
+ ///
+ /// // Since we already have an extra 8 capacity, calling this...
+ /// s.reserve(8);
+ ///
+ /// // ... doesn't actually increase.
+ /// assert_eq!(10, s.capacity());
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn reserve(&mut self, additional: usize) {
+ self.vec.reserve(additional)
+ }
+
+ /// Ensures that this `String`'s capacity is `additional` bytes
+ /// larger than its length.
+ ///
+ /// Consider using the [`reserve`] method unless you absolutely know
+ /// better than the allocator.
+ ///
+ /// [`reserve`]: String::reserve
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity overflows `usize`.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::new();
+ ///
+ /// s.reserve_exact(10);
+ ///
+ /// assert!(s.capacity() >= 10);
+ /// ```
+ ///
+ /// This might not actually increase the capacity:
+ ///
+ /// ```
+ /// let mut s = String::with_capacity(10);
+ /// s.push('a');
+ /// s.push('b');
+ ///
+ /// // s now has a length of 2 and a capacity of 10
+ /// assert_eq!(2, s.len());
+ /// assert_eq!(10, s.capacity());
+ ///
+ /// // Since we already have an extra 8 capacity, calling this...
+ /// s.reserve_exact(8);
+ ///
+ /// // ... doesn't actually increase.
+ /// assert_eq!(10, s.capacity());
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn reserve_exact(&mut self, additional: usize) {
+ self.vec.reserve_exact(additional)
+ }
+
+ /// Tries to reserve capacity for at least `additional` more elements to be inserted
+ /// in the given `String`. The collection may reserve more space to avoid
+ /// frequent reallocations. After calling `reserve`, capacity will be
+ /// greater than or equal to `self.len() + additional`. Does nothing if
+ /// capacity is already sufficient.
+ ///
+ /// # Errors
+ ///
+ /// If the capacity overflows, or the allocator reports a failure, then an error
+ /// is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::TryReserveError;
+ ///
+ /// fn process_data(data: &str) -> Result<String, TryReserveError> {
+ /// let mut output = String::new();
+ ///
+ /// // Pre-reserve the memory, exiting if we can't
+ /// output.try_reserve(data.len())?;
+ ///
+ /// // Now we know this can't OOM in the middle of our complex work
+ /// output.push_str(data);
+ ///
+ /// Ok(output)
+ /// }
+ /// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
+ /// ```
+ #[stable(feature = "try_reserve", since = "1.57.0")]
+ pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
+ self.vec.try_reserve(additional)
+ }
+
+ /// Tries to reserve the minimum capacity for exactly `additional` more elements to
+ /// be inserted in the given `String`. After calling `try_reserve_exact`,
+ /// capacity will be greater than or equal to `self.len() + additional`.
+ /// Does nothing if the capacity is already sufficient.
+ ///
+ /// Note that the allocator may give the collection more space than it
+ /// requests. Therefore, capacity can not be relied upon to be precisely
+ /// minimal. Prefer [`try_reserve`] if future insertions are expected.
+ ///
+ /// [`try_reserve`]: String::try_reserve
+ ///
+ /// # Errors
+ ///
+ /// If the capacity overflows, or the allocator reports a failure, then an error
+ /// is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::TryReserveError;
+ ///
+ /// fn process_data(data: &str) -> Result<String, TryReserveError> {
+ /// let mut output = String::new();
+ ///
+ /// // Pre-reserve the memory, exiting if we can't
+ /// output.try_reserve_exact(data.len())?;
+ ///
+ /// // Now we know this can't OOM in the middle of our complex work
+ /// output.push_str(data);
+ ///
+ /// Ok(output)
+ /// }
+ /// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
+ /// ```
+ #[stable(feature = "try_reserve", since = "1.57.0")]
+ pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
+ self.vec.try_reserve_exact(additional)
+ }
+
+ /// Shrinks the capacity of this `String` to match its length.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("foo");
+ ///
+ /// s.reserve(100);
+ /// assert!(s.capacity() >= 100);
+ ///
+ /// s.shrink_to_fit();
+ /// assert_eq!(3, s.capacity());
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn shrink_to_fit(&mut self) {
+ self.vec.shrink_to_fit()
+ }
+
+ /// Shrinks the capacity of this `String` with a lower bound.
+ ///
+ /// The capacity will remain at least as large as both the length
+ /// and the supplied value.
+ ///
+ /// If the current capacity is less than the lower limit, this is a no-op.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut s = String::from("foo");
+ ///
+ /// s.reserve(100);
+ /// assert!(s.capacity() >= 100);
+ ///
+ /// s.shrink_to(10);
+ /// assert!(s.capacity() >= 10);
+ /// s.shrink_to(0);
+ /// assert!(s.capacity() >= 3);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "shrink_to", since = "1.56.0")]
+ pub fn shrink_to(&mut self, min_capacity: usize) {
+ self.vec.shrink_to(min_capacity)
+ }
+
+ /// Appends the given [`char`] to the end of this `String`.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("abc");
+ ///
+ /// s.push('1');
+ /// s.push('2');
+ /// s.push('3');
+ ///
+ /// assert_eq!("abc123", s);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn push(&mut self, ch: char) {
+ match ch.len_utf8() {
+ 1 => self.vec.push(ch as u8),
+ _ => self.vec.extend_from_slice(ch.encode_utf8(&mut [0; 4]).as_bytes()),
+ }
+ }
+
+ /// Returns a byte slice of this `String`'s contents.
+ ///
+ /// The inverse of this method is [`from_utf8`].
+ ///
+ /// [`from_utf8`]: String::from_utf8
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = String::from("hello");
+ ///
+ /// assert_eq!(&[104, 101, 108, 108, 111], s.as_bytes());
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn as_bytes(&self) -> &[u8] {
+ &self.vec
+ }
+
+ /// Shortens this `String` to the specified length.
+ ///
+ /// If `new_len` is greater than the string's current length, this has no
+ /// effect.
+ ///
+ /// Note that this method has no effect on the allocated capacity
+ /// of the string
+ ///
+ /// # Panics
+ ///
+ /// Panics if `new_len` does not lie on a [`char`] boundary.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("hello");
+ ///
+ /// s.truncate(2);
+ ///
+ /// assert_eq!("he", s);
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn truncate(&mut self, new_len: usize) {
+ if new_len <= self.len() {
+ assert!(self.is_char_boundary(new_len));
+ self.vec.truncate(new_len)
+ }
+ }
+
+ /// Removes the last character from the string buffer and returns it.
+ ///
+ /// Returns [`None`] if this `String` is empty.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("foo");
+ ///
+ /// assert_eq!(s.pop(), Some('o'));
+ /// assert_eq!(s.pop(), Some('o'));
+ /// assert_eq!(s.pop(), Some('f'));
+ ///
+ /// assert_eq!(s.pop(), None);
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn pop(&mut self) -> Option<char> {
+ let ch = self.chars().rev().next()?;
+ let newlen = self.len() - ch.len_utf8();
+ unsafe {
+ self.vec.set_len(newlen);
+ }
+ Some(ch)
+ }
+
+ /// Removes a [`char`] from this `String` at a byte position and returns it.
+ ///
+ /// This is an *O*(*n*) operation, as it requires copying every element in the
+ /// buffer.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `idx` is larger than or equal to the `String`'s length,
+ /// or if it does not lie on a [`char`] boundary.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("foo");
+ ///
+ /// assert_eq!(s.remove(0), 'f');
+ /// assert_eq!(s.remove(1), 'o');
+ /// assert_eq!(s.remove(0), 'o');
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn remove(&mut self, idx: usize) -> char {
+ let ch = match self[idx..].chars().next() {
+ Some(ch) => ch,
+ None => panic!("cannot remove a char from the end of a string"),
+ };
+
+ let next = idx + ch.len_utf8();
+ let len = self.len();
+ unsafe {
+ ptr::copy(self.vec.as_ptr().add(next), self.vec.as_mut_ptr().add(idx), len - next);
+ self.vec.set_len(len - (next - idx));
+ }
+ ch
+ }
+
+ /// Remove all matches of pattern `pat` in the `String`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(string_remove_matches)]
+ /// let mut s = String::from("Trees are not green, the sky is not blue.");
+ /// s.remove_matches("not ");
+ /// assert_eq!("Trees are green, the sky is blue.", s);
+ /// ```
+ ///
+ /// Matches will be detected and removed iteratively, so in cases where
+ /// patterns overlap, only the first pattern will be removed:
+ ///
+ /// ```
+ /// #![feature(string_remove_matches)]
+ /// let mut s = String::from("banana");
+ /// s.remove_matches("ana");
+ /// assert_eq!("bna", s);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[unstable(feature = "string_remove_matches", reason = "new API", issue = "72826")]
+ pub fn remove_matches<'a, P>(&'a mut self, pat: P)
+ where
+ P: for<'x> Pattern<'x>,
+ {
+ use core::str::pattern::Searcher;
+
+ let rejections = {
+ let mut searcher = pat.into_searcher(self);
+ // Per Searcher::next:
+ //
+ // A Match result needs to contain the whole matched pattern,
+ // however Reject results may be split up into arbitrary many
+ // adjacent fragments. Both ranges may have zero length.
+ //
+ // In practice the implementation of Searcher::next_match tends to
+ // be more efficient, so we use it here and do some work to invert
+ // matches into rejections since that's what we want to copy below.
+ let mut front = 0;
+ let rejections: Vec<_> = from_fn(|| {
+ let (start, end) = searcher.next_match()?;
+ let prev_front = front;
+ front = end;
+ Some((prev_front, start))
+ })
+ .collect();
+ rejections.into_iter().chain(core::iter::once((front, self.len())))
+ };
+
+ let mut len = 0;
+ let ptr = self.vec.as_mut_ptr();
+
+ for (start, end) in rejections {
+ let count = end - start;
+ if start != len {
+ // SAFETY: per Searcher::next:
+ //
+ // The stream of Match and Reject values up to a Done will
+ // contain index ranges that are adjacent, non-overlapping,
+ // covering the whole haystack, and laying on utf8
+ // boundaries.
+ unsafe {
+ ptr::copy(ptr.add(start), ptr.add(len), count);
+ }
+ }
+ len += count;
+ }
+
+ unsafe {
+ self.vec.set_len(len);
+ }
+ }
+
+ /// Retains only the characters specified by the predicate.
+ ///
+ /// In other words, remove all characters `c` such that `f(c)` returns `false`.
+ /// This method operates in place, visiting each character exactly once in the
+ /// original order, and preserves the order of the retained characters.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut s = String::from("f_o_ob_ar");
+ ///
+ /// s.retain(|c| c != '_');
+ ///
+ /// assert_eq!(s, "foobar");
+ /// ```
+ ///
+ /// Because the elements are visited exactly once in the original order,
+ /// external state may be used to decide which elements to keep.
+ ///
+ /// ```
+ /// let mut s = String::from("abcde");
+ /// let keep = [false, true, true, false, true];
+ /// let mut iter = keep.iter();
+ /// s.retain(|_| *iter.next().unwrap());
+ /// assert_eq!(s, "bce");
+ /// ```
+ #[inline]
+ #[stable(feature = "string_retain", since = "1.26.0")]
+ pub fn retain<F>(&mut self, mut f: F)
+ where
+ F: FnMut(char) -> bool,
+ {
+ struct SetLenOnDrop<'a> {
+ s: &'a mut String,
+ idx: usize,
+ del_bytes: usize,
+ }
+
+ impl<'a> Drop for SetLenOnDrop<'a> {
+ fn drop(&mut self) {
+ let new_len = self.idx - self.del_bytes;
+ debug_assert!(new_len <= self.s.len());
+ unsafe { self.s.vec.set_len(new_len) };
+ }
+ }
+
+ let len = self.len();
+ let mut guard = SetLenOnDrop { s: self, idx: 0, del_bytes: 0 };
+
+ while guard.idx < len {
+ let ch = unsafe { guard.s.get_unchecked(guard.idx..len).chars().next().unwrap() };
+ let ch_len = ch.len_utf8();
+
+ if !f(ch) {
+ guard.del_bytes += ch_len;
+ } else if guard.del_bytes > 0 {
+ unsafe {
+ ptr::copy(
+ guard.s.vec.as_ptr().add(guard.idx),
+ guard.s.vec.as_mut_ptr().add(guard.idx - guard.del_bytes),
+ ch_len,
+ );
+ }
+ }
+
+ // Point idx to the next char
+ guard.idx += ch_len;
+ }
+
+ drop(guard);
+ }
+
+ /// Inserts a character into this `String` at a byte position.
+ ///
+ /// This is an *O*(*n*) operation as it requires copying every element in the
+ /// buffer.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `idx` is larger than the `String`'s length, or if it does not
+ /// lie on a [`char`] boundary.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::with_capacity(3);
+ ///
+ /// s.insert(0, 'f');
+ /// s.insert(1, 'o');
+ /// s.insert(2, 'o');
+ ///
+ /// assert_eq!("foo", s);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn insert(&mut self, idx: usize, ch: char) {
+ assert!(self.is_char_boundary(idx));
+ let mut bits = [0; 4];
+ let bits = ch.encode_utf8(&mut bits).as_bytes();
+
+ unsafe {
+ self.insert_bytes(idx, bits);
+ }
+ }
+
+ #[cfg(not(no_global_oom_handling))]
+ unsafe fn insert_bytes(&mut self, idx: usize, bytes: &[u8]) {
+ let len = self.len();
+ let amt = bytes.len();
+ self.vec.reserve(amt);
+
+ unsafe {
+ ptr::copy(self.vec.as_ptr().add(idx), self.vec.as_mut_ptr().add(idx + amt), len - idx);
+ ptr::copy_nonoverlapping(bytes.as_ptr(), self.vec.as_mut_ptr().add(idx), amt);
+ self.vec.set_len(len + amt);
+ }
+ }
+
+ /// Inserts a string slice into this `String` at a byte position.
+ ///
+ /// This is an *O*(*n*) operation as it requires copying every element in the
+ /// buffer.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `idx` is larger than the `String`'s length, or if it does not
+ /// lie on a [`char`] boundary.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("bar");
+ ///
+ /// s.insert_str(0, "foo");
+ ///
+ /// assert_eq!("foobar", s);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "insert_str", since = "1.16.0")]
+ pub fn insert_str(&mut self, idx: usize, string: &str) {
+ assert!(self.is_char_boundary(idx));
+
+ unsafe {
+ self.insert_bytes(idx, string.as_bytes());
+ }
+ }
+
+ /// Returns a mutable reference to the contents of this `String`.
+ ///
+ /// # Safety
+ ///
+ /// This function is unsafe because the returned `&mut Vec` allows writing
+ /// bytes which are not valid UTF-8. If this constraint is violated, using
+ /// the original `String` after dropping the `&mut Vec` may violate memory
+ /// safety, as the rest of the standard library assumes that `String`s are
+ /// valid UTF-8.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("hello");
+ ///
+ /// unsafe {
+ /// let vec = s.as_mut_vec();
+ /// assert_eq!(&[104, 101, 108, 108, 111][..], &vec[..]);
+ ///
+ /// vec.reverse();
+ /// }
+ /// assert_eq!(s, "olleh");
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub unsafe fn as_mut_vec(&mut self) -> &mut Vec<u8> {
+ &mut self.vec
+ }
+
+ /// Returns the length of this `String`, in bytes, not [`char`]s or
+ /// graphemes. In other words, it might not be what a human considers the
+ /// length of the string.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = String::from("foo");
+ /// assert_eq!(a.len(), 3);
+ ///
+ /// let fancy_f = String::from("ฦ’oo");
+ /// assert_eq!(fancy_f.len(), 4);
+ /// assert_eq!(fancy_f.chars().count(), 3);
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn len(&self) -> usize {
+ self.vec.len()
+ }
+
+ /// Returns `true` if this `String` has a length of zero, and `false` otherwise.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut v = String::new();
+ /// assert!(v.is_empty());
+ ///
+ /// v.push('a');
+ /// assert!(!v.is_empty());
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ /// Splits the string into two at the given byte index.
+ ///
+ /// Returns a newly allocated `String`. `self` contains bytes `[0, at)`, and
+ /// the returned `String` contains bytes `[at, len)`. `at` must be on the
+ /// boundary of a UTF-8 code point.
+ ///
+ /// Note that the capacity of `self` does not change.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `at` is not on a `UTF-8` code point boundary, or if it is beyond the last
+ /// code point of the string.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # fn main() {
+ /// let mut hello = String::from("Hello, World!");
+ /// let world = hello.split_off(7);
+ /// assert_eq!(hello, "Hello, ");
+ /// assert_eq!(world, "World!");
+ /// # }
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "string_split_off", since = "1.16.0")]
+ #[must_use = "use `.truncate()` if you don't need the other half"]
+ pub fn split_off(&mut self, at: usize) -> String {
+ assert!(self.is_char_boundary(at));
+ let other = self.vec.split_off(at);
+ unsafe { String::from_utf8_unchecked(other) }
+ }
+
+ /// Truncates this `String`, removing all contents.
+ ///
+ /// While this means the `String` will have a length of zero, it does not
+ /// touch its capacity.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("foo");
+ ///
+ /// s.clear();
+ ///
+ /// assert!(s.is_empty());
+ /// assert_eq!(0, s.len());
+ /// assert_eq!(3, s.capacity());
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn clear(&mut self) {
+ self.vec.clear()
+ }
+
+ /// Removes the specified range from the string in bulk, returning all
+ /// removed characters as an iterator.
+ ///
+ /// The returned iterator keeps a mutable borrow on the string to optimize
+ /// its implementation.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the starting point or end point do not lie on a [`char`]
+ /// boundary, or if they're out of bounds.
+ ///
+ /// # Leaking
+ ///
+ /// If the returned iterator goes out of scope without being dropped (due to
+ /// [`core::mem::forget`], for example), the string may still contain a copy
+ /// of any drained characters, or may have lost characters arbitrarily,
+ /// including characters outside the range.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("ฮฑ is alpha, ฮฒ is beta");
+ /// let beta_offset = s.find('ฮฒ').unwrap_or(s.len());
+ ///
+ /// // Remove the range up until the ฮฒ from the string
+ /// let t: String = s.drain(..beta_offset).collect();
+ /// assert_eq!(t, "ฮฑ is alpha, ");
+ /// assert_eq!(s, "ฮฒ is beta");
+ ///
+ /// // A full range clears the string, like `clear()` does
+ /// s.drain(..);
+ /// assert_eq!(s, "");
+ /// ```
+ #[stable(feature = "drain", since = "1.6.0")]
+ pub fn drain<R>(&mut self, range: R) -> Drain<'_>
+ where
+ R: RangeBounds<usize>,
+ {
+ // Memory safety
+ //
+ // The String version of Drain does not have the memory safety issues
+ // of the vector version. The data is just plain bytes.
+ // Because the range removal happens in Drop, if the Drain iterator is leaked,
+ // the removal will not happen.
+ let Range { start, end } = slice::range(range, ..self.len());
+ assert!(self.is_char_boundary(start));
+ assert!(self.is_char_boundary(end));
+
+ // Take out two simultaneous borrows. The &mut String won't be accessed
+ // until iteration is over, in Drop.
+ let self_ptr = self as *mut _;
+ // SAFETY: `slice::range` and `is_char_boundary` do the appropriate bounds checks.
+ let chars_iter = unsafe { self.get_unchecked(start..end) }.chars();
+
+ Drain { start, end, iter: chars_iter, string: self_ptr }
+ }
+
+ /// Removes the specified range in the string,
+ /// and replaces it with the given string.
+ /// The given string doesn't need to be the same length as the range.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the starting point or end point do not lie on a [`char`]
+ /// boundary, or if they're out of bounds.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("ฮฑ is alpha, ฮฒ is beta");
+ /// let beta_offset = s.find('ฮฒ').unwrap_or(s.len());
+ ///
+ /// // Replace the range up until the ฮฒ from the string
+ /// s.replace_range(..beta_offset, "ฮ‘ is capital alpha; ");
+ /// assert_eq!(s, "ฮ‘ is capital alpha; ฮฒ is beta");
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "splice", since = "1.27.0")]
+ pub fn replace_range<R>(&mut self, range: R, replace_with: &str)
+ where
+ R: RangeBounds<usize>,
+ {
+ // Memory safety
+ //
+ // Replace_range does not have the memory safety issues of a vector Splice.
+ // of the vector version. The data is just plain bytes.
+
+ // WARNING: Inlining this variable would be unsound (#81138)
+ let start = range.start_bound();
+ match start {
+ Included(&n) => assert!(self.is_char_boundary(n)),
+ Excluded(&n) => assert!(self.is_char_boundary(n + 1)),
+ Unbounded => {}
+ };
+ // WARNING: Inlining this variable would be unsound (#81138)
+ let end = range.end_bound();
+ match end {
+ Included(&n) => assert!(self.is_char_boundary(n + 1)),
+ Excluded(&n) => assert!(self.is_char_boundary(n)),
+ Unbounded => {}
+ };
+
+ // Using `range` again would be unsound (#81138)
+ // We assume the bounds reported by `range` remain the same, but
+ // an adversarial implementation could change between calls
+ unsafe { self.as_mut_vec() }.splice((start, end), replace_with.bytes());
+ }
+
+ /// Converts this `String` into a <code>[Box]<[str]></code>.
+ ///
+ /// This will drop any excess capacity.
+ ///
+ /// [str]: prim@str "str"
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = String::from("hello");
+ ///
+ /// let b = s.into_boxed_str();
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "box_str", since = "1.4.0")]
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[inline]
+ pub fn into_boxed_str(self) -> Box<str> {
+ let slice = self.vec.into_boxed_slice();
+ unsafe { from_boxed_utf8_unchecked(slice) }
+ }
+}
+
+impl FromUtf8Error {
+ /// Returns a slice of [`u8`]s bytes that were attempted to convert to a `String`.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// // some invalid bytes, in a vector
+ /// let bytes = vec![0, 159];
+ ///
+ /// let value = String::from_utf8(bytes);
+ ///
+ /// assert_eq!(&[0, 159], value.unwrap_err().as_bytes());
+ /// ```
+ #[must_use]
+ #[stable(feature = "from_utf8_error_as_bytes", since = "1.26.0")]
+ pub fn as_bytes(&self) -> &[u8] {
+ &self.bytes[..]
+ }
+
+ /// Returns the bytes that were attempted to convert to a `String`.
+ ///
+ /// This method is carefully constructed to avoid allocation. It will
+ /// consume the error, moving out the bytes, so that a copy of the bytes
+ /// does not need to be made.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// // some invalid bytes, in a vector
+ /// let bytes = vec![0, 159];
+ ///
+ /// let value = String::from_utf8(bytes);
+ ///
+ /// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
+ /// ```
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn into_bytes(self) -> Vec<u8> {
+ self.bytes
+ }
+
+ /// Fetch a `Utf8Error` to get more details about the conversion failure.
+ ///
+ /// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
+ /// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
+ /// an analogue to `FromUtf8Error`. See its documentation for more details
+ /// on using it.
+ ///
+ /// [`std::str`]: core::str "std::str"
+ /// [`&str`]: prim@str "&str"
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// // some invalid bytes, in a vector
+ /// let bytes = vec![0, 159];
+ ///
+ /// let error = String::from_utf8(bytes).unwrap_err().utf8_error();
+ ///
+ /// // the first byte is invalid here
+ /// assert_eq!(1, error.valid_up_to());
+ /// ```
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn utf8_error(&self) -> Utf8Error {
+ self.error
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl fmt::Display for FromUtf8Error {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Display::fmt(&self.error, f)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl fmt::Display for FromUtf16Error {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Display::fmt("invalid utf-16: lone surrogate found", f)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Clone for String {
+ fn clone(&self) -> Self {
+ String { vec: self.vec.clone() }
+ }
+
+ fn clone_from(&mut self, source: &Self) {
+ self.vec.clone_from(&source.vec);
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl FromIterator<char> for String {
+ fn from_iter<I: IntoIterator<Item = char>>(iter: I) -> String {
+ let mut buf = String::new();
+ buf.extend(iter);
+ buf
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "string_from_iter_by_ref", since = "1.17.0")]
+impl<'a> FromIterator<&'a char> for String {
+ fn from_iter<I: IntoIterator<Item = &'a char>>(iter: I) -> String {
+ let mut buf = String::new();
+ buf.extend(iter);
+ buf
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a> FromIterator<&'a str> for String {
+ fn from_iter<I: IntoIterator<Item = &'a str>>(iter: I) -> String {
+ let mut buf = String::new();
+ buf.extend(iter);
+ buf
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "extend_string", since = "1.4.0")]
+impl FromIterator<String> for String {
+ fn from_iter<I: IntoIterator<Item = String>>(iter: I) -> String {
+ let mut iterator = iter.into_iter();
+
+ // Because we're iterating over `String`s, we can avoid at least
+ // one allocation by getting the first string from the iterator
+ // and appending to it all the subsequent strings.
+ match iterator.next() {
+ None => String::new(),
+ Some(mut buf) => {
+ buf.extend(iterator);
+ buf
+ }
+ }
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "box_str2", since = "1.45.0")]
+impl FromIterator<Box<str>> for String {
+ fn from_iter<I: IntoIterator<Item = Box<str>>>(iter: I) -> String {
+ let mut buf = String::new();
+ buf.extend(iter);
+ buf
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "herd_cows", since = "1.19.0")]
+impl<'a> FromIterator<Cow<'a, str>> for String {
+ fn from_iter<I: IntoIterator<Item = Cow<'a, str>>>(iter: I) -> String {
+ let mut iterator = iter.into_iter();
+
+ // Because we're iterating over CoWs, we can (potentially) avoid at least
+ // one allocation by getting the first item and appending to it all the
+ // subsequent items.
+ match iterator.next() {
+ None => String::new(),
+ Some(cow) => {
+ let mut buf = cow.into_owned();
+ buf.extend(iterator);
+ buf
+ }
+ }
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Extend<char> for String {
+ fn extend<I: IntoIterator<Item = char>>(&mut self, iter: I) {
+ let iterator = iter.into_iter();
+ let (lower_bound, _) = iterator.size_hint();
+ self.reserve(lower_bound);
+ iterator.for_each(move |c| self.push(c));
+ }
+
+ #[inline]
+ fn extend_one(&mut self, c: char) {
+ self.push(c);
+ }
+
+ #[inline]
+ fn extend_reserve(&mut self, additional: usize) {
+ self.reserve(additional);
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "extend_ref", since = "1.2.0")]
+impl<'a> Extend<&'a char> for String {
+ fn extend<I: IntoIterator<Item = &'a char>>(&mut self, iter: I) {
+ self.extend(iter.into_iter().cloned());
+ }
+
+ #[inline]
+ fn extend_one(&mut self, &c: &'a char) {
+ self.push(c);
+ }
+
+ #[inline]
+ fn extend_reserve(&mut self, additional: usize) {
+ self.reserve(additional);
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a> Extend<&'a str> for String {
+ fn extend<I: IntoIterator<Item = &'a str>>(&mut self, iter: I) {
+ iter.into_iter().for_each(move |s| self.push_str(s));
+ }
+
+ #[inline]
+ fn extend_one(&mut self, s: &'a str) {
+ self.push_str(s);
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "box_str2", since = "1.45.0")]
+impl Extend<Box<str>> for String {
+ fn extend<I: IntoIterator<Item = Box<str>>>(&mut self, iter: I) {
+ iter.into_iter().for_each(move |s| self.push_str(&s));
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "extend_string", since = "1.4.0")]
+impl Extend<String> for String {
+ fn extend<I: IntoIterator<Item = String>>(&mut self, iter: I) {
+ iter.into_iter().for_each(move |s| self.push_str(&s));
+ }
+
+ #[inline]
+ fn extend_one(&mut self, s: String) {
+ self.push_str(&s);
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "herd_cows", since = "1.19.0")]
+impl<'a> Extend<Cow<'a, str>> for String {
+ fn extend<I: IntoIterator<Item = Cow<'a, str>>>(&mut self, iter: I) {
+ iter.into_iter().for_each(move |s| self.push_str(&s));
+ }
+
+ #[inline]
+ fn extend_one(&mut self, s: Cow<'a, str>) {
+ self.push_str(&s);
+ }
+}
+
+/// A convenience impl that delegates to the impl for `&str`.
+///
+/// # Examples
+///
+/// ```
+/// assert_eq!(String::from("Hello world").find("world"), Some(6));
+/// ```
+#[unstable(
+ feature = "pattern",
+ reason = "API not fully fleshed out and ready to be stabilized",
+ issue = "27721"
+)]
+impl<'a, 'b> Pattern<'a> for &'b String {
+ type Searcher = <&'b str as Pattern<'a>>::Searcher;
+
+ fn into_searcher(self, haystack: &'a str) -> <&'b str as Pattern<'a>>::Searcher {
+ self[..].into_searcher(haystack)
+ }
+
+ #[inline]
+ fn is_contained_in(self, haystack: &'a str) -> bool {
+ self[..].is_contained_in(haystack)
+ }
+
+ #[inline]
+ fn is_prefix_of(self, haystack: &'a str) -> bool {
+ self[..].is_prefix_of(haystack)
+ }
+
+ #[inline]
+ fn strip_prefix_of(self, haystack: &'a str) -> Option<&'a str> {
+ self[..].strip_prefix_of(haystack)
+ }
+
+ #[inline]
+ fn is_suffix_of(self, haystack: &'a str) -> bool {
+ self[..].is_suffix_of(haystack)
+ }
+
+ #[inline]
+ fn strip_suffix_of(self, haystack: &'a str) -> Option<&'a str> {
+ self[..].strip_suffix_of(haystack)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl PartialEq for String {
+ #[inline]
+ fn eq(&self, other: &String) -> bool {
+ PartialEq::eq(&self[..], &other[..])
+ }
+ #[inline]
+ fn ne(&self, other: &String) -> bool {
+ PartialEq::ne(&self[..], &other[..])
+ }
+}
+
+macro_rules! impl_eq {
+ ($lhs:ty, $rhs: ty) => {
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[allow(unused_lifetimes)]
+ impl<'a, 'b> PartialEq<$rhs> for $lhs {
+ #[inline]
+ fn eq(&self, other: &$rhs) -> bool {
+ PartialEq::eq(&self[..], &other[..])
+ }
+ #[inline]
+ fn ne(&self, other: &$rhs) -> bool {
+ PartialEq::ne(&self[..], &other[..])
+ }
+ }
+
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[allow(unused_lifetimes)]
+ impl<'a, 'b> PartialEq<$lhs> for $rhs {
+ #[inline]
+ fn eq(&self, other: &$lhs) -> bool {
+ PartialEq::eq(&self[..], &other[..])
+ }
+ #[inline]
+ fn ne(&self, other: &$lhs) -> bool {
+ PartialEq::ne(&self[..], &other[..])
+ }
+ }
+ };
+}
+
+impl_eq! { String, str }
+impl_eq! { String, &'a str }
+#[cfg(not(no_global_oom_handling))]
+impl_eq! { Cow<'a, str>, str }
+#[cfg(not(no_global_oom_handling))]
+impl_eq! { Cow<'a, str>, &'b str }
+#[cfg(not(no_global_oom_handling))]
+impl_eq! { Cow<'a, str>, String }
+
+#[stable(feature = "rust1", since = "1.0.0")]
+#[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
+impl const Default for String {
+ /// Creates an empty `String`.
+ #[inline]
+ fn default() -> String {
+ String::new()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl fmt::Display for String {
+ #[inline]
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Display::fmt(&**self, f)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl fmt::Debug for String {
+ #[inline]
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Debug::fmt(&**self, f)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl hash::Hash for String {
+ #[inline]
+ fn hash<H: hash::Hasher>(&self, hasher: &mut H) {
+ (**self).hash(hasher)
+ }
+}
+
+/// Implements the `+` operator for concatenating two strings.
+///
+/// This consumes the `String` on the left-hand side and re-uses its buffer (growing it if
+/// necessary). This is done to avoid allocating a new `String` and copying the entire contents on
+/// every operation, which would lead to *O*(*n*^2) running time when building an *n*-byte string by
+/// repeated concatenation.
+///
+/// The string on the right-hand side is only borrowed; its contents are copied into the returned
+/// `String`.
+///
+/// # Examples
+///
+/// Concatenating two `String`s takes the first by value and borrows the second:
+///
+/// ```
+/// let a = String::from("hello");
+/// let b = String::from(" world");
+/// let c = a + &b;
+/// // `a` is moved and can no longer be used here.
+/// ```
+///
+/// If you want to keep using the first `String`, you can clone it and append to the clone instead:
+///
+/// ```
+/// let a = String::from("hello");
+/// let b = String::from(" world");
+/// let c = a.clone() + &b;
+/// // `a` is still valid here.
+/// ```
+///
+/// Concatenating `&str` slices can be done by converting the first to a `String`:
+///
+/// ```
+/// let a = "hello";
+/// let b = " world";
+/// let c = a.to_string() + b;
+/// ```
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Add<&str> for String {
+ type Output = String;
+
+ #[inline]
+ fn add(mut self, other: &str) -> String {
+ self.push_str(other);
+ self
+ }
+}
+
+/// Implements the `+=` operator for appending to a `String`.
+///
+/// This has the same behavior as the [`push_str`][String::push_str] method.
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "stringaddassign", since = "1.12.0")]
+impl AddAssign<&str> for String {
+ #[inline]
+ fn add_assign(&mut self, other: &str) {
+ self.push_str(other);
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl ops::Index<ops::Range<usize>> for String {
+ type Output = str;
+
+ #[inline]
+ fn index(&self, index: ops::Range<usize>) -> &str {
+ &self[..][index]
+ }
+}
+#[stable(feature = "rust1", since = "1.0.0")]
+impl ops::Index<ops::RangeTo<usize>> for String {
+ type Output = str;
+
+ #[inline]
+ fn index(&self, index: ops::RangeTo<usize>) -> &str {
+ &self[..][index]
+ }
+}
+#[stable(feature = "rust1", since = "1.0.0")]
+impl ops::Index<ops::RangeFrom<usize>> for String {
+ type Output = str;
+
+ #[inline]
+ fn index(&self, index: ops::RangeFrom<usize>) -> &str {
+ &self[..][index]
+ }
+}
+#[stable(feature = "rust1", since = "1.0.0")]
+impl ops::Index<ops::RangeFull> for String {
+ type Output = str;
+
+ #[inline]
+ fn index(&self, _index: ops::RangeFull) -> &str {
+ unsafe { str::from_utf8_unchecked(&self.vec) }
+ }
+}
+#[stable(feature = "inclusive_range", since = "1.26.0")]
+impl ops::Index<ops::RangeInclusive<usize>> for String {
+ type Output = str;
+
+ #[inline]
+ fn index(&self, index: ops::RangeInclusive<usize>) -> &str {
+ Index::index(&**self, index)
+ }
+}
+#[stable(feature = "inclusive_range", since = "1.26.0")]
+impl ops::Index<ops::RangeToInclusive<usize>> for String {
+ type Output = str;
+
+ #[inline]
+ fn index(&self, index: ops::RangeToInclusive<usize>) -> &str {
+ Index::index(&**self, index)
+ }
+}
+
+#[stable(feature = "derefmut_for_string", since = "1.3.0")]
+impl ops::IndexMut<ops::Range<usize>> for String {
+ #[inline]
+ fn index_mut(&mut self, index: ops::Range<usize>) -> &mut str {
+ &mut self[..][index]
+ }
+}
+#[stable(feature = "derefmut_for_string", since = "1.3.0")]
+impl ops::IndexMut<ops::RangeTo<usize>> for String {
+ #[inline]
+ fn index_mut(&mut self, index: ops::RangeTo<usize>) -> &mut str {
+ &mut self[..][index]
+ }
+}
+#[stable(feature = "derefmut_for_string", since = "1.3.0")]
+impl ops::IndexMut<ops::RangeFrom<usize>> for String {
+ #[inline]
+ fn index_mut(&mut self, index: ops::RangeFrom<usize>) -> &mut str {
+ &mut self[..][index]
+ }
+}
+#[stable(feature = "derefmut_for_string", since = "1.3.0")]
+impl ops::IndexMut<ops::RangeFull> for String {
+ #[inline]
+ fn index_mut(&mut self, _index: ops::RangeFull) -> &mut str {
+ unsafe { str::from_utf8_unchecked_mut(&mut *self.vec) }
+ }
+}
+#[stable(feature = "inclusive_range", since = "1.26.0")]
+impl ops::IndexMut<ops::RangeInclusive<usize>> for String {
+ #[inline]
+ fn index_mut(&mut self, index: ops::RangeInclusive<usize>) -> &mut str {
+ IndexMut::index_mut(&mut **self, index)
+ }
+}
+#[stable(feature = "inclusive_range", since = "1.26.0")]
+impl ops::IndexMut<ops::RangeToInclusive<usize>> for String {
+ #[inline]
+ fn index_mut(&mut self, index: ops::RangeToInclusive<usize>) -> &mut str {
+ IndexMut::index_mut(&mut **self, index)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl ops::Deref for String {
+ type Target = str;
+
+ #[inline]
+ fn deref(&self) -> &str {
+ unsafe { str::from_utf8_unchecked(&self.vec) }
+ }
+}
+
+#[stable(feature = "derefmut_for_string", since = "1.3.0")]
+impl ops::DerefMut for String {
+ #[inline]
+ fn deref_mut(&mut self) -> &mut str {
+ unsafe { str::from_utf8_unchecked_mut(&mut *self.vec) }
+ }
+}
+
+/// A type alias for [`Infallible`].
+///
+/// This alias exists for backwards compatibility, and may be eventually deprecated.
+///
+/// [`Infallible`]: core::convert::Infallible "convert::Infallible"
+#[stable(feature = "str_parse_error", since = "1.5.0")]
+pub type ParseError = core::convert::Infallible;
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl FromStr for String {
+ type Err = core::convert::Infallible;
+ #[inline]
+ fn from_str(s: &str) -> Result<String, Self::Err> {
+ Ok(String::from(s))
+ }
+}
+
+/// A trait for converting a value to a `String`.
+///
+/// This trait is automatically implemented for any type which implements the
+/// [`Display`] trait. As such, `ToString` shouldn't be implemented directly:
+/// [`Display`] should be implemented instead, and you get the `ToString`
+/// implementation for free.
+///
+/// [`Display`]: fmt::Display
+#[cfg_attr(not(test), rustc_diagnostic_item = "ToString")]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub trait ToString {
+ /// Converts the given value to a `String`.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let i = 5;
+ /// let five = String::from("5");
+ ///
+ /// assert_eq!(five, i.to_string());
+ /// ```
+ #[rustc_conversion_suggestion]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn to_string(&self) -> String;
+}
+
+/// # Panics
+///
+/// In this implementation, the `to_string` method panics
+/// if the `Display` implementation returns an error.
+/// This indicates an incorrect `Display` implementation
+/// since `fmt::Write for String` never returns an error itself.
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: fmt::Display + ?Sized> ToString for T {
+ // A common guideline is to not inline generic functions. However,
+ // removing `#[inline]` from this method causes non-negligible regressions.
+ // See <https://github.com/rust-lang/rust/pull/74852>, the last attempt
+ // to try to remove it.
+ #[inline]
+ default fn to_string(&self) -> String {
+ let mut buf = String::new();
+ let mut formatter = core::fmt::Formatter::new(&mut buf);
+ // Bypass format_args!() to avoid write_str with zero-length strs
+ fmt::Display::fmt(self, &mut formatter)
+ .expect("a Display implementation returned an error unexpectedly");
+ buf
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "char_to_string_specialization", since = "1.46.0")]
+impl ToString for char {
+ #[inline]
+ fn to_string(&self) -> String {
+ String::from(self.encode_utf8(&mut [0; 4]))
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "u8_to_string_specialization", since = "1.54.0")]
+impl ToString for u8 {
+ #[inline]
+ fn to_string(&self) -> String {
+ let mut buf = String::with_capacity(3);
+ let mut n = *self;
+ if n >= 10 {
+ if n >= 100 {
+ buf.push((b'0' + n / 100) as char);
+ n %= 100;
+ }
+ buf.push((b'0' + n / 10) as char);
+ n %= 10;
+ }
+ buf.push((b'0' + n) as char);
+ buf
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "i8_to_string_specialization", since = "1.54.0")]
+impl ToString for i8 {
+ #[inline]
+ fn to_string(&self) -> String {
+ let mut buf = String::with_capacity(4);
+ if self.is_negative() {
+ buf.push('-');
+ }
+ let mut n = self.unsigned_abs();
+ if n >= 10 {
+ if n >= 100 {
+ buf.push('1');
+ n -= 100;
+ }
+ buf.push((b'0' + n / 10) as char);
+ n %= 10;
+ }
+ buf.push((b'0' + n) as char);
+ buf
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "str_to_string_specialization", since = "1.9.0")]
+impl ToString for str {
+ #[inline]
+ fn to_string(&self) -> String {
+ String::from(self)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "cow_str_to_string_specialization", since = "1.17.0")]
+impl ToString for Cow<'_, str> {
+ #[inline]
+ fn to_string(&self) -> String {
+ self[..].to_owned()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "string_to_string_specialization", since = "1.17.0")]
+impl ToString for String {
+ #[inline]
+ fn to_string(&self) -> String {
+ self.to_owned()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl AsRef<str> for String {
+ #[inline]
+ fn as_ref(&self) -> &str {
+ self
+ }
+}
+
+#[stable(feature = "string_as_mut", since = "1.43.0")]
+impl AsMut<str> for String {
+ #[inline]
+ fn as_mut(&mut self) -> &mut str {
+ self
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl AsRef<[u8]> for String {
+ #[inline]
+ fn as_ref(&self) -> &[u8] {
+ self.as_bytes()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl From<&str> for String {
+ /// Converts a `&str` into a [`String`].
+ ///
+ /// The result is allocated on the heap.
+ #[inline]
+ fn from(s: &str) -> String {
+ s.to_owned()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "from_mut_str_for_string", since = "1.44.0")]
+impl From<&mut str> for String {
+ /// Converts a `&mut str` into a [`String`].
+ ///
+ /// The result is allocated on the heap.
+ #[inline]
+ fn from(s: &mut str) -> String {
+ s.to_owned()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "from_ref_string", since = "1.35.0")]
+impl From<&String> for String {
+ /// Converts a `&String` into a [`String`].
+ ///
+ /// This clones `s` and returns the clone.
+ #[inline]
+ fn from(s: &String) -> String {
+ s.clone()
+ }
+}
+
+// note: test pulls in libstd, which causes errors here
+#[cfg(not(test))]
+#[stable(feature = "string_from_box", since = "1.18.0")]
+impl From<Box<str>> for String {
+ /// Converts the given boxed `str` slice to a [`String`].
+ /// It is notable that the `str` slice is owned.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s1: String = String::from("hello world");
+ /// let s2: Box<str> = s1.into_boxed_str();
+ /// let s3: String = String::from(s2);
+ ///
+ /// assert_eq!("hello world", s3)
+ /// ```
+ fn from(s: Box<str>) -> String {
+ s.into_string()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "box_from_str", since = "1.20.0")]
+impl From<String> for Box<str> {
+ /// Converts the given [`String`] to a boxed `str` slice that is owned.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s1: String = String::from("hello world");
+ /// let s2: Box<str> = Box::from(s1);
+ /// let s3: String = String::from(s2);
+ ///
+ /// assert_eq!("hello world", s3)
+ /// ```
+ fn from(s: String) -> Box<str> {
+ s.into_boxed_str()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "string_from_cow_str", since = "1.14.0")]
+impl<'a> From<Cow<'a, str>> for String {
+ /// Converts a clone-on-write string to an owned
+ /// instance of [`String`].
+ ///
+ /// This extracts the owned string,
+ /// clones the string if it is not already owned.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use std::borrow::Cow;
+ /// // If the string is not owned...
+ /// let cow: Cow<str> = Cow::Borrowed("eggplant");
+ /// // It will allocate on the heap and copy the string.
+ /// let owned: String = String::from(cow);
+ /// assert_eq!(&owned[..], "eggplant");
+ /// ```
+ fn from(s: Cow<'a, str>) -> String {
+ s.into_owned()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a> From<&'a str> for Cow<'a, str> {
+ /// Converts a string slice into a [`Borrowed`] variant.
+ /// No heap allocation is performed, and the string
+ /// is not copied.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use std::borrow::Cow;
+ /// assert_eq!(Cow::from("eggplant"), Cow::Borrowed("eggplant"));
+ /// ```
+ ///
+ /// [`Borrowed`]: crate::borrow::Cow::Borrowed "borrow::Cow::Borrowed"
+ #[inline]
+ fn from(s: &'a str) -> Cow<'a, str> {
+ Cow::Borrowed(s)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a> From<String> for Cow<'a, str> {
+ /// Converts a [`String`] into an [`Owned`] variant.
+ /// No heap allocation is performed, and the string
+ /// is not copied.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use std::borrow::Cow;
+ /// let s = "eggplant".to_string();
+ /// let s2 = "eggplant".to_string();
+ /// assert_eq!(Cow::from(s), Cow::<'static, str>::Owned(s2));
+ /// ```
+ ///
+ /// [`Owned`]: crate::borrow::Cow::Owned "borrow::Cow::Owned"
+ #[inline]
+ fn from(s: String) -> Cow<'a, str> {
+ Cow::Owned(s)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "cow_from_string_ref", since = "1.28.0")]
+impl<'a> From<&'a String> for Cow<'a, str> {
+ /// Converts a [`String`] reference into a [`Borrowed`] variant.
+ /// No heap allocation is performed, and the string
+ /// is not copied.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use std::borrow::Cow;
+ /// let s = "eggplant".to_string();
+ /// assert_eq!(Cow::from(&s), Cow::Borrowed("eggplant"));
+ /// ```
+ ///
+ /// [`Borrowed`]: crate::borrow::Cow::Borrowed "borrow::Cow::Borrowed"
+ #[inline]
+ fn from(s: &'a String) -> Cow<'a, str> {
+ Cow::Borrowed(s.as_str())
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
+impl<'a> FromIterator<char> for Cow<'a, str> {
+ fn from_iter<I: IntoIterator<Item = char>>(it: I) -> Cow<'a, str> {
+ Cow::Owned(FromIterator::from_iter(it))
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
+impl<'a, 'b> FromIterator<&'b str> for Cow<'a, str> {
+ fn from_iter<I: IntoIterator<Item = &'b str>>(it: I) -> Cow<'a, str> {
+ Cow::Owned(FromIterator::from_iter(it))
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
+impl<'a> FromIterator<String> for Cow<'a, str> {
+ fn from_iter<I: IntoIterator<Item = String>>(it: I) -> Cow<'a, str> {
+ Cow::Owned(FromIterator::from_iter(it))
+ }
+}
+
+#[stable(feature = "from_string_for_vec_u8", since = "1.14.0")]
+impl From<String> for Vec<u8> {
+ /// Converts the given [`String`] to a vector [`Vec`] that holds values of type [`u8`].
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s1 = String::from("hello world");
+ /// let v1 = Vec::from(s1);
+ ///
+ /// for b in v1 {
+ /// println!("{b}");
+ /// }
+ /// ```
+ fn from(string: String) -> Vec<u8> {
+ string.into_bytes()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl fmt::Write for String {
+ #[inline]
+ fn write_str(&mut self, s: &str) -> fmt::Result {
+ self.push_str(s);
+ Ok(())
+ }
+
+ #[inline]
+ fn write_char(&mut self, c: char) -> fmt::Result {
+ self.push(c);
+ Ok(())
+ }
+}
+
+/// A draining iterator for `String`.
+///
+/// This struct is created by the [`drain`] method on [`String`]. See its
+/// documentation for more.
+///
+/// [`drain`]: String::drain
+#[stable(feature = "drain", since = "1.6.0")]
+pub struct Drain<'a> {
+ /// Will be used as &'a mut String in the destructor
+ string: *mut String,
+ /// Start of part to remove
+ start: usize,
+ /// End of part to remove
+ end: usize,
+ /// Current remaining range to remove
+ iter: Chars<'a>,
+}
+
+#[stable(feature = "collection_debug", since = "1.17.0")]
+impl fmt::Debug for Drain<'_> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_tuple("Drain").field(&self.as_str()).finish()
+ }
+}
+
+#[stable(feature = "drain", since = "1.6.0")]
+unsafe impl Sync for Drain<'_> {}
+#[stable(feature = "drain", since = "1.6.0")]
+unsafe impl Send for Drain<'_> {}
+
+#[stable(feature = "drain", since = "1.6.0")]
+impl Drop for Drain<'_> {
+ fn drop(&mut self) {
+ unsafe {
+ // Use Vec::drain. "Reaffirm" the bounds checks to avoid
+ // panic code being inserted again.
+ let self_vec = (*self.string).as_mut_vec();
+ if self.start <= self.end && self.end <= self_vec.len() {
+ self_vec.drain(self.start..self.end);
+ }
+ }
+ }
+}
+
+impl<'a> Drain<'a> {
+ /// Returns the remaining (sub)string of this iterator as a slice.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut s = String::from("abc");
+ /// let mut drain = s.drain(..);
+ /// assert_eq!(drain.as_str(), "abc");
+ /// let _ = drain.next().unwrap();
+ /// assert_eq!(drain.as_str(), "bc");
+ /// ```
+ #[must_use]
+ #[stable(feature = "string_drain_as_str", since = "1.55.0")]
+ pub fn as_str(&self) -> &str {
+ self.iter.as_str()
+ }
+}
+
+#[stable(feature = "string_drain_as_str", since = "1.55.0")]
+impl<'a> AsRef<str> for Drain<'a> {
+ fn as_ref(&self) -> &str {
+ self.as_str()
+ }
+}
+
+#[stable(feature = "string_drain_as_str", since = "1.55.0")]
+impl<'a> AsRef<[u8]> for Drain<'a> {
+ fn as_ref(&self) -> &[u8] {
+ self.as_str().as_bytes()
+ }
+}
+
+#[stable(feature = "drain", since = "1.6.0")]
+impl Iterator for Drain<'_> {
+ type Item = char;
+
+ #[inline]
+ fn next(&mut self) -> Option<char> {
+ self.iter.next()
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+
+ #[inline]
+ fn last(mut self) -> Option<char> {
+ self.next_back()
+ }
+}
+
+#[stable(feature = "drain", since = "1.6.0")]
+impl DoubleEndedIterator for Drain<'_> {
+ #[inline]
+ fn next_back(&mut self) -> Option<char> {
+ self.iter.next_back()
+ }
+}
+
+#[stable(feature = "fused", since = "1.26.0")]
+impl FusedIterator for Drain<'_> {}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "from_char_for_string", since = "1.46.0")]
+impl From<char> for String {
+ /// Allocates an owned [`String`] from a single character.
+ ///
+ /// # Example
+ /// ```rust
+ /// let c: char = 'a';
+ /// let s: String = String::from(c);
+ /// assert_eq!("a", &s[..]);
+ /// ```
+ #[inline]
+ fn from(c: char) -> Self {
+ c.to_string()
+ }
+}