summaryrefslogtreecommitdiff
path: root/0625/speedrun.tex
blob: d27209fb57855f3034b1870acd7b2a673716642c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
\documentclass[aspectratio=169]{beamer}

\title{IGCSE Physics Speed Run}
\subtitle{\alert{UNFINISHED/INCOMPLETE}}
\author{Runxi~Yu}
\institute{YKPS Y10}
\date{Updated \today}

%%% BEAMER THEME
\definecolor{MainColor}{RGB}{0,0,0}
\definecolor{SubColor}{rgb}{0.97, 0.97, 0.97}
\setbeamercolor{structure}{fg=MainColor}
\setbeamercolor{background canvas}{bg=SubColor}

%%% TABLE-RELATED ADJUSTMENTS
\usepackage{array}
\renewcommand{\arraystretch}{1.2}
\newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\newcolumntype{C}[1]{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\newcolumntype{R}[1]{>{\raggedleft\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\usepackage{multirow}

%%% MATH AND SCIENCE NOTATION PACKAGES
\usepackage{siunitx}
\usepackage{amsmath}
\usepackage[version=4]{mhchem}

%%% MISC STANDARD LAYOUT ADJUSTMENTS
\usepackage{multicol}
\usepackage{subcaption}
\usepackage{parskip}
\usepackage{xpatch}
\xpatchcmd{\itemize}%
	{\def\makelabel}%
	{\setlength{\itemsep}{0ex}\setlength{\parsep}{0.8ex}\def\makelabel}%
	{}{}

%%% MISC
\usepackage{graphicx}
\graphicspath{{images}}

%%% NAVIGATION SYSTEM
\makeatletter
\newcommand\listofframes{\vfill\@starttoc{lbf\thesection}}
\newcommand\listofunits{\vfill\@starttoc{lunits}}
\makeatother
\newcommand{\csection}[1]{
	\section{#1}
	\begin{frame}[label=#1]
		\plainframetitle{#1}
		\begin{multicols}{2}
			\footnotesize\listofframes
		\end{multicols}
		\addtocontents%
			{lunits}%
			{%
				\protect\contentsline{section}{{%
					\protect\makebox[13em][l]{%
						\protect\hyperlink{page.\insertframenumber}%
							{\protect\usebeamercolor[fg]{structure}\insertframetitle}%
						\hfill%
					}%
					\insertframenumber\vfill
				}}{}{}%
			}
	\end{frame}
}
\let\plainframetitle\frametitle
\renewcommand{\frametitle}[1]{%
	\subsection{#1}
	\addtocontents%
		{lbf\thesection}%
		{%
			\protect\contentsline{subsection}{%
				\protect\makebox[19.5em][l]{%
					\protect\hyperlink{page.\insertframenumber}%
						{\protect\usebeamercolor[fg]{structure}#1}%
					{\color{lightgray}\dotfill}\insertframenumber%
				}%
			}{}{}%
		}
	\plainframetitle{#1}
}
\usepackage[export]{adjustbox}
\setbeamertemplate{navigation symbols}{%
	\adjustbox{valign=b}{%
		\usebeamerfont{footline}%
		\hyperlink{Preamble}{IGCSE Physics}
		/
		\hyperlink{\insertsection}{\insertsection}%
		\makebox[5em][r]{\insertframenumber/\inserttotalframenumber}%
	}
}



\begin{document}
\section{Preamble}
\maketitle

\begin{frame}{Information}
	This document, based on the IGCSE Physics Syllabus, was written to aid revision of IGCSE Physics concepts to students who just need to pass the IGCSE Physics examination. Some memory of ZK Physics is expected. This document does not, however, attempt to systematically cover the subject, and some of the concepts are deliberately oversimplified in order to match IGCSE exam strategy.
\end{frame}

\begin{frame}{How to use this revision packet}
	This is the main revision resource that should have been sent to you as part of a larger revision packet. The packet contains a handout document, containing sample questions, reference sheets, and additional explanations.
	
	This document is best viewed interactively and contains hyperlinks to aid navigation. ``IGCSE Physics / \textit{Section name}'' is displayed in the bottom right along with the page number. Click ``IGCSE Physics'' to return to the main contents page; click ``\textit{Section name}'' to return to the section's contents page. All items of the contents pages are clickable. A PDF navigation outline is also available, if your PDF viewer supports it.

	The Git repository that includes all resources used in this speed run:
	\url{https://git.andrewyu.org/andrew/school/igcse-physics-speedrun.git/}
\end{frame}

\begin{frame}{Note to self}
	Remember to re-check the learner guide's syllabus section for highlighted/missing items.
\end{frame}

\begin{frame}[label=Preamble]{Contents}
	\listofunits
\end{frame}

\definecolor{MainColor}{RGB}{78,174,71}
\definecolor{SubColor}{rgb}{0.9591020408163266, 0.9826122448979591, 0.9573877551020409}
\csection{General physics}

\begin{frame}{Measurement}
	Use common sense, and:
	\begin{itemize}
		\item Read perpendicular to the ruler / measuring cylinder to avoid \textbf{parallax error}
		\item Eyes parallel to the \textbf{meniscus} (lowest\footnote{EXCEPT mercury, where the meniscus is the highest point} point of curved liquid surface)
		\item State the unit
		\item Use the correct significant digits
		\item Measure very small intervals by stacking and dividing to obtain average\\[1ex]
			E.g. $\displaystyle\text{thickness of 1 sheet of paper}=\frac{\text{thickness of 20 sheets}}{20}$
	\end{itemize}

	\textbf{Complete question~0(a).}
\end{frame}


\begin{frame}{Vector and scalar quantities}
	\begin{tabular}{|L{12em}|L{20em}|}
		\hline
		{}\hfill\bfseries Scalar quantity\hfill\mbox{} & {}\hfill\bfseries Vector quantity\hfill\mbox{} \\\hline
		Magnitude only & Magnitude and direction \\\hline
		Distance, speed, time, mass, energy, temperature &
		Force, weight, velocity, acceleration, momentum, electric field strength, gravitational field strength \\\hline
	\end{tabular}
\end{frame}


\begin{frame}{Motion basics}
	\begin{align*}
		\text{speed } v &= \frac{\text{distance } s}{\text{time } t}
	\end{align*}
		
	\begin{itemize}
		\item \textbf{Velocity} = speed in a given direction
		\item \textbf{Displacement} = distance in a given direction
		\item $\displaystyle\qty{3.6}{\kilo\metre\per\hour} = \qty{1}{\metre\per\second}$
		\item $\displaystyle \frac{s}{t} = \frac{\left(u+v\right)}{2}$ or $\displaystyle s = \frac{\left(u+v\right)}{2}t$
	\end{itemize}
\end{frame}

\begin{frame}{Acceleration}
	\begin{align*}
		\text{acceleration } a &= \frac{\text{velocity } v}{\text{time } t}
	\end{align*}
	
	\begin{itemize}
		\item $\displaystyle \text{new velocity } v = \text{old velocity } u + at$
 		\item $\displaystyle s = ut + \frac{1}{2} at^2$
		\item $\displaystyle v^2 = u^2 + 2as$ (see method~2 of question~2(a))
		\item (Ignoring air resistance) always \qty{9.8}{\metre\per\second\squared} near Earth surface
		\item $\text{Deceleration} = - \text{acceleration}$
	\end{itemize}
\end{frame}


\begin{frame}{Velocity-time graphs}
	\begin{figure}
		\begin{subfigure}{0.4\textwidth}
			\includegraphics[width=1\textwidth]{vt-1.pdf}
			\caption{Acceleration, constant speed and deceleration}
		\end{subfigure}
		\begin{subfigure}{0.4\textwidth}
			\includegraphics[width=1\textwidth]{vt-variable-acceleration.pdf}
			\caption{Variable acceleration}
		\end{subfigure}
	\end{figure}
	\begin{itemize}
		\item Area under the curve (shaded) is the distance travelled
		\item Find acceleration by drawing tangent and calculating gradient
	\end{itemize}
\end{frame}

\begin{frame}{Distance-time graphs}
	\begin{figure}
		\begin{subfigure}{0.4\textwidth}
			\includegraphics[width=1\textwidth]{st-1.pdf}
			\caption{Constant speed}
		\end{subfigure}
		\begin{subfigure}{0.4\textwidth}
			\includegraphics[width=1\textwidth]{st-2.pdf}
			\caption{Non-constant speed}
		\end{subfigure}
	\end{figure}
	\begin{itemize}
		\item Calculate velocity from gradient of tangent: $\displaystyle\frac{y_A-y_C}{x_A-x_C}$ for point $T$ in fig~(b)
	\end{itemize}
\end{frame}


\begin{frame}{Resultant forces on lines}
	Calculate the resultant of \qty{6}{\newton} to the left and \qty{4}{\newton} to the right.
	\begin{figure}
		\includegraphics{resultant-on-line.pdf}\hfill\mbox{}
	\end{figure}
	
	$\qty{6}{\newton} - \qty{4}{\newton} = \qty{4}{\newton} \text{ to the left}$
\end{frame}


\begin{frame}{Calculating vector resultants}
	Calculate the resultant of two perpendicular forces of \qty{3.0}{\newton} and \qty{4.0}{\newton}.
	
	\begingroup
	\renewcommand{\arraystretch}{1.5}
	\begin{tabular}{|l|l|}
		\hline
		Resultant magnitude & $\displaystyle\sqrt{3.0^2 + 4.0^2} = \qty{5.0}{\newton}$\\\hline
		Resultant angle & $\displaystyle\arctan{\left(\frac{4.0}{3.0}\right)} = \ang{53}$ from the \qty{3.0}{\newton} force\\\hline
	\end{tabular}
	\endgroup
	
	The syllabus doesn't technically require calculations for angles other than \ang{90}, but just use normal trigonometry if it ever occurs on papers.
	
	\textbf{You also need to be able to use scale diagrams to add vectors.\\Complete question~1.}
\end{frame}


\begin{frame}{Effects of forces}{Newton's laws}
	\begin{enumerate}
		\item An object has constant velocity unless acted on by a resultant force.
		\item \alert{$\text{force }F = \text{mass }m\times\text{acceleration }a$ (must be in the same direction)}\\
			i.e. $\unit{\newton} = \unit{\kilo\gram\metre\per\second\squared}$
		\item Every action force has an equal and opposite reaction force.
	\end{enumerate}
\end{frame}

\begin{frame}{Friction}
	\begin{itemize}
		\item Force between two surfaces
		\item Impedes motion (because friction is opposite to motion)
		\item Produces heat — loses energy
		\item \textbf{Friction increases, as speed increases}
		\item E.g. air resistance
	\end{itemize}
\end{frame}

\begin{frame}{Falling bodies}
	\begin{enumerate}
		\item Initially, there is no air resistance and the only force acting on it is weight.
		\item As it falls, it accelerates which increases its speed and therefore increases the air resistance (a type of friction).
		\item This causes the resultant force downwards to decrease.
		\item Therefore the acceleration decreases, so it is not speeding up as quickly.
		\item Eventually they are equal and opposite so there is no resultant force.
		\item So there is no acceleration and the \textbf{terminal velocity} is reached.
	\end{enumerate}
	\textbf{Complete question~3.}
\end{frame}

\begin{frame}{Gravity}
	\begin{itemize}
		\item Objects near to the surface of the Earth approximately accelerates at $\qty{9.8}{\metre\per\second\squared}$.
		\item Weight ($W$, not $G$) is a force by the gravitational field on an object that has mass. $g = \frac{W}{m}$ and $W = mg$. 
		\item Gravitational field strength $g \approx \qty{9.8}{\newton\per\kilo\gram}$.
	\end{itemize}
\end{frame}




\begin{frame}{Elasticity}
	Besides changing the state of movement of an object, forces may produce changes in the size and shape of an object.
	\begin{itemize}
		\item Springs obey Hooke's Law: Below its elastic limit, the extension of the spring is directly proportional to the force pulling on it. The spring constant $k$ follows $k = \frac{F}{x}$ where $F$ is the force and $x$ is the extension.
		\item Elastic bands do not obey Hooke's Law.  The slope of extension-over-force is quite steep at the start and at the end, and beyond the limit it will break.  The breaking point is the elastic limit.
		\item Both springs and elastic bands wouldn't be able to return to its original length when the force is removed, should it go beyond its elastic limit.
		\end{itemize}
\end{frame}
%
%
\begin{frame}{Circular motion}
	A resultant force \emph{not} on the line that the object is moving, changes the direction of the object's movement.
	
	\begin{equation*}
		F = \frac{mv^2}{r}
	\end{equation*}
	
	Properties of motion in a circular path due to \textbf{a force perpendicular to the motion}:
	\begin{itemize}
		\item Speed increases if force increases, with mass and radius constant.
		\item Radius decreases if force increases, with mass and speed constant.
		\item An increased mass requires an increased force to keep speed and radius constant.
	\end{itemize}
\end{frame}
%
\begin{frame}{Momentum}
	\begin{equation*}
		\text{momentum} = \text{mass}\times\text{velocity}
	\end{equation*}
	
	Momentum ($p$), a measure of how easily an object may be brought to rest, is a vector quantity, which has its magnitude measured in \unit{\kilo\gram\metre\per\second}
\end{frame}

\begin{frame}{Collisions}
	When two bodies collide,
	\begin{align*}
		& \text{total momentum of the two bodies before collision}\\ {=\;}& \text{total momentum of the two bodies after collision}
	\end{align*}
	
	Therefore,
	\begin{align*}
		m_1 v_1 + m_2 v_2 \text{ (before)} = m_1 v_1 + m_2 v_2 \text{ (after)}
	\end{align*}
	
	In exams you might be asked to consider a situation where two objects, $A$ and $B$, collide. You know their mass and velocity, and thus momentum, before the collision. You also know the velocity of $A$ after the collision. You are asked to calculate the velocity of $B$. Do you see how?
	
	TODO: Add a PPQ
\end{frame}
%
\begin{frame}{Impulse}
	\begin{itemize}
		\item $\text{Impulse} = F\Delta t = \Delta (mv) = \Delta p$
		\item $\text{Impulse} = \text{change in momentum} = \text{force for a set period of time}$
		\item Units: $\unit{\kilo\gram\metre\per\second} = \unit{\newton\second}$
		\item $\displaystyle F = \frac{\Delta p}{\Delta t}$
	\end{itemize}
\end{frame}

\begin{frame}{Moments}
	We've learned this in ZK Physics, but in summary:
	\begin{equation*}
		\text{moment} = \text{force}\times\text{perpendicular distance from pivot to force}
	\end{equation*}
	
	Note: $\unit{\newton\metre} \ne \unit{joule}$ here because the directions are perpendicular in moments, while the directions are the same in joules.
	
	Conditions for equilibrium:
	\begin{itemize}
		\item Clockwise moment = anti-clockwise moment;
		\item \textbf{AND} no resultant force.
	\end{itemize}
\end{frame}

\begin{frame}{Energy}
	\begin{itemize}
		\item Energy may be stored as kinetic, gravitational potential, chemical, elastic (strain), nuclear, electrostatic and internal (thermal).
		\item Energy is transferred between stores during events and processes, including examples of transfer by forces (mechanical work done), electrical currents (electrical work done), heating, and by electromagnetic, sound and other waves.
		\item Energy is conserved in an isolated system; energy is never created or destroyed, only transferred.
		\item Common ways to ``lose'' energy include producing heat, sound energy, etc.
	\end{itemize}
\end{frame}

\begin{frame}{Energy equations}
	\begin{itemize}
		\item Kinetic energy $= \displaystyle E_k = \frac{1}{2}mv^2$
		\item Gravitational potential energy $= \displaystyle \Delta E_p = mg\Delta h$
		\item Work $= \displaystyle W = Fd = \Delta E$ where $d$ is distance in the same direction as $F$
		\item Power $= \displaystyle p = \frac{\Delta E}{p} = \frac{W}{p}$
	\end{itemize}
	
	\textbf{Complete question~2.}
\end{frame}

\begin{frame}{Density}
	\begin{align*}
		\text{density }\rho &= \frac{\text{mass }m}{\text{volume }V}
	\end{align*}
	
	Measurement of volume for density calculation:
	\begin{itemize}
		\item For regular solids: rulers
		\item For irregular solids: displace water in measuring cylinder
	\end{itemize}
\end{frame}

\begin{frame}{Floating objects}
	\begin{tabular}{|l|l|}
		\hline
		{}\hfill\bfseries Density\hfill\mbox{} & {}\hfill\bfseries Floating condition\hfill\mbox{} \\\hline
		$\text{Object} < \text{fluid}$ & Floats to top \\\hline
		$\text{Object} = \text{fluid}$ & Floats at equilibrium \\\hline
		$\text{Object} > \text{fluid}$ & Sinks\\\hline
	\end{tabular}
	\begin{itemize}
		\item When two liquids don’t mix, the denser one goes below, i.e. water below oil
		\item $\text{``fluid''} \in {\text{liquid}, {gas}}$
		\item Density of air decreases when higher up; so helium balloons ultimately reach equilibrium
	\end{itemize}
\end{frame}

\begin{frame}{Pressure}
	\begin{align*}
		\text{pressure }p &= \frac{\text{force }F}{\text{area } A} & \text{(solids)}\\
		&= \text{density }\rho \times g \times \text{height to liquid surface} & \text{(liquids)}\\\\
		F &= p \times A & \text{(all)}\\
		\\
		\text{Unit} &= \unit{\newton\per\metre\squared}
	\end{align*}
	
	($g$ is the gravitational field strength, which on Earth would be $\qty{9.8}{\meter\per\second\squared}$)
\end{frame}

\definecolor{MainColor}{RGB}{0,80,147}
\definecolor{SubColor}{rgb}{0.94, 0.9726530612244898, 1.0}
\csection{Thermal physics}

\begin{frame}{Conduction}
	Thermal energy is transferred \textbf{through} a material, \textbf{without movement} of the material, from places of higher temperature to places of lower temperature.
	
	Example: Handle of metal spoon in boiling water.
	
	\begin{tabular}{|l|l|l|l|}
		\hline Material & Conductivity & Type & Mechanism\tabularnewline
		\hline Metals  & Good  & Thermal conductor & Delocalized electrons\tabularnewline
		\hline Most other solids  & Bad & \multirow{3}{*}{Thermal insulator} & \multirow{3}{*}{Lattice vibrations}\tabularnewline
		\cline{1-2} \cline{2-2} Liquids  & Bad & &\tabularnewline
		\cline{1-2} \cline{2-2} Gases  & Very bad & &\tabularnewline
		\hline 
	\end{tabular}
	
	\begin{itemize}
		\item Metals ``feel'' colder because it transfer's your hand's heat faster away
		% TODO: SEMICONDUCTORS?
	\end{itemize}
\end{frame}

\begin{frame}{Conductivity experiment}
	Task: Design an experiment to show different thermal conductivity in different materials.
	
	\centering
	\includegraphics{conductivity-materials-experiment.pdf}
\end{frame}

\begin{frame}{Convection}
	Thermal energy is transferred owing to \textbf{movement of the liquid or gas medium} itself.
	
	The liquid or gas expands on heating, so its density falls. They rise to the cooler region, transferring thermal energy in the process. Therefore, convection naturally goes \textbf{up}. The air that moves is called the convection current.
	
	Example: The air conditioners in your dorms.
\end{frame}

\begin{frame}{Radiation}
	Thermal energy is transferred by infrared radiation. All objects emit this radiation.

	Infrared is an electromagnetic wave, so it travels in vacuum. Radiation does not require a medium.
	
	\begin{tabular}{|l|l|}
		\hline Black dull surfaces  & Good absorber and emitter\tabularnewline
		\hline White shiny surface  & Bad absorber and emitter\tabularnewline\hline
	\end{tabular}
	
	Radiation is emitted by all bodies above absolute zero and consists mostly of infrared radiation, but light and ultraviolet are also present if the body is very hot.
\end{frame}

\begin{frame}{Radiation experiment}
Task: Design an experiment to compare absorption in different colors.

\begin{columns}
		\column{0.55\textwidth}
		\includegraphics{radiation-absorption.pdf}
		\column{0.45\textwidth}
		The inside surface of one lid is shiny and of the other dull black. The coins are stuck on the outside of each lid with candle wax. If the heater is midway between the lids, they each receive the same amount of radiation. After a few minutes the wax on the black lid melts and the coin falls off. The shiny lid stays cool and the wax unmelted.
	\end{columns}
\end{frame}

%\begin{frame}{Radiation}{Experiment to demonstrate radiation emission by color}
%	\begin{columns}
%		\column{0.4\textwidth}
%		\includegraphics{radiation-emission.pdf}
%		\column{0.45\textwidth}
%		Some surfaces also emit radiation better than others when they are hot. If you hold the backs of your hands on either side of a hot copper sheet that has one side polished and the other side blackened, it will be found that your hands feel warmer near the dull black surface. The dull black surface is a better emitter of radiation than the shiny one.
%	\end{columns}
%\end{frame}

\begin{frame}{Transfer rate and temperature}
	How does temperature affect thermal transfer?

	\begin{tabular}{|l|l|l|}
		\hline Equal in \& out & Maintain constant temperature\tabularnewline
		\hline More out than in  & Temperature falls\tabularnewline
		\hline More in than out & Temperature rises\tabularnewline
		\hline
	\end{tabular}
		
	But
	
	\begin{tabular}{|l|l|}
		\hline Higher temperature & Faster thermal transfer\tabularnewline
		\hline Lower temperature & Slower thermal transfer\tabularnewline
		\hline
	\end{tabular}
	
	Which means that things will try to reach an equilibrium---of the same temperature.
\end{frame}

\begin{frame}{Practical applications}{E.g. hot water bottles}
	\begin{columns}
		\column{0.3\textwidth}
		\mbox{}\hfill
		\includegraphics{hot-water-bottle.pdf}
		\column{0.45\textwidth}
		Transfer of thermal energy by conduction and convection is minimized by making the flask a double-walled glass vessel with a vacuum between the walls. Radiation is reduced by silvering both walls on the vacuum side.
	\end{columns}
	
	\textbf{Complete question~5.}
\end{frame}

\definecolor{MainColor}{RGB}{111,104,160}
\definecolor{SubColor}{rgb}{0.9648780487804878, 0.963170731707317, 0.9768292682926829}
\csection{Waves}

\begin{frame}{Waves basics}
	Waves transfer energy without transferring matter.
	\begin{itemize}
		\item TODO
		\item \textbf{Mechanical waves}: disturbance in a \textbf{material medium} and are \textbf{transmitted by the particles of the medium vibrating about a fixed position}\\
			Water, sound, seismic, etc.
		\item \textbf{Electromagnetic waves}: carried by photons\\
			See: \hyperlink{Electromagnetic spectrum}{\protect\usebeamercolor[fg]{structure}{Electromagnetic spectrum}}
			\end{itemize}
\end{frame}

\begin{frame}{Longitudinal waves}
	\centering
	\includegraphics{longitudinal.pdf}
	
	\raggedright
	The particles of the transmitting medium vibrate back and forth along the same line as (parallel to) that in which the wave is traveling.
	Examples: Sound waves, seismic P-waves.
\end{frame}

\begin{frame}{Transverse waves}
	\centering
	\includegraphics{transverse.pdf}
	
	\raggedright
	The direction of the disturbance is at right angles to the direction of propagation of the wave.
	Examples: water waves, electromagnetic waves, seismic S-waves.
\end{frame}

\begin{frame}{Transverse wave graphs}
	\centering
	\includegraphics{displacement-time-generic.pdf}
	
	\raggedright
	This is a \textbf{displacement--distance graph}. It shows, at a certain instant of time, the \textbf{displacement (sideways from their equilibrium)} by the parts of the medium vibrating at different distances from the cause of the wave. It therefore shows \textbf{wavelength}, \textbf{amplitude}, \textbf{crests and troughs}, etc. It does \textbf{not} take into account of \textbf{velocity}, \textbf{time}, or \textbf{frequency}.
\end{frame}

\begin{frame}{Transverse wave properties 1}
	\centering
	\includegraphics{displacement-time-generic.pdf}
	
	\raggedright
	\begin{itemize}
		\item \textbf{Wavelength} $\lambda$ is the \textbf{distance between successive crests}. It's basically the ``period'' when we learned about $\sin(x)$ in math, except that period in physics means \textbf{time} between successive crests. People suck at naming.
		\item \textbf{Amplitude} $a$ is the height of a crest or the depth of a trough measured from the equilibrium.
		\item A is \textbf{in phase} with C; B is in phase with D. They have the same speed and same direction, only they're on different parts of the whole wave.
	\end{itemize}
\end{frame}

\begin{frame}{Transverse wave properties 2}
	\begin{itemize}
		\item \textbf{Frequency} $f$ is the number of complete waves/phases each second. It is measured in Hertz (Hz), which means ``times per second''. It is also the number of crests passing a certain fixed point in space per second.
		\item \textbf{Wave speed} $v$ is the distance moved in the direction of travel of the wave by a crest or any point on the wave in 1 second.
	\end{itemize}
\end{frame}

\begin{frame}{The wave-speed equation}
	\begin{columns}
		\column{0.45\textwidth}
		\begin{align*}
			\text{wave speed} &= \text{frequency} \times \text{wavelength}\\
			v &= f\lambda
		\end{align*}
		\column{0.5\textwidth}
		\includegraphics{wave-speed.pdf}
	\end{columns}
\end{frame}

\begin{frame}{Wavefronts and rays}
	\begin{itemize}
		\item A \textbf{wavefront} shows \textbf{similar points in phase} of a progressive transverse wave when extended from 2D to 3D by a flat projection, such as a wave in water.
		\item A \textbf{ray} of a progressive transverse wave shows its \textbf{direction of travel}.
	\end{itemize}
\end{frame}

\begin{frame}{Reflection}
	\centering
	\includegraphics{wave-reflection.pdf}
	
	\raggedright
	\begin{itemize}
		\item Straight water waves are falling on a metal strip placed in a ripple tank.
		\item The \textbf{normal} is the line perpendicular to the surface where the incident wavefront strikes.
		\item The \textbf{angle of incidence} $i$ is equal to the \textbf{angle of reflection} $r$.
	\end{itemize}
\end{frame}

\begin{frame}\plainframetitle{Reflection example}
	TODO: REPLACE
	\includegraphics[width=\textwidth]{reflection-drawing-1.pdf}
	\includegraphics[width=\textwidth]{reflection-drawing-2.pdf}
\end{frame}

\begin{frame}{Refraction}
	\centering
	\includegraphics{wave-refraction.pdf}
	
	\raggedright
	\begin{itemize}
		\item In shallower water, the speed of the wave decreases.
		\item The frequency of the wave stays the same. (You don't need to know why.)
		\item Therefore, the wavelength increases by $v = f\lambda$.
	\end{itemize}
\end{frame}

\begin{frame}\plainframetitle{Refraction example}
	TODO: REPLACE
	\includegraphics[width=\textwidth]{refraction-drawing.pdf}
\end{frame}

\begin{frame}{Diffraction: narrow gap}
	\begin{columns}
		\column{0.47\textwidth}
		\includegraphics[scale=0.6]{diffraction-narrow.pdf}
		\column{0.5\textwidth}
		\begin{itemize}
			\item Diffraction of waves in a ripple tank by a gap that is narrower than the wavelength.
			\item Speed, wavelength and frequency are unchanged. Direction is diffracted.
		\end{itemize}
	\end{columns}
\end{frame}

\begin{frame}{Diffraction: edge or gap}
	\begin{columns}
		\column{0.47\textwidth}
		\includegraphics[scale=0.6]{diffraction-gap.pdf}
		\column{0.5\textwidth}
		\begin{itemize}
			\item Diffraction of waves in a ripple tank by a gap that is larger than the wavelength.
			\item Speed, wavelength and frequency are unchanged. Part of the original wave is preserved.
		\end{itemize}
	\end{columns}
\end{frame}

\begin{frame}{Diffraction, gap size, and $\gamma$}
	\begin{itemize}
		\item Reducing the wavelength with the same gap reduces diffraction.
		\item Increasing the wavelength with the same gap increases diffraction.
		\item Diffraction past an edge increases if the wavelength increases.
	\end{itemize}
\end{frame}

\begin{frame}{Image characteristics}
\end{frame}

\begin{frame}{Reflection of light}
\end{frame}

\begin{frame}{Refraction of light}
\end{frame}

\begin{frame}{Total internal reflection}
\end{frame}

\begin{frame}{Optical fibres}
\end{frame}

\begin{frame}{Thin lenses 1}
\end{frame}

\begin{frame}{Thin lenses 2}
\end{frame}

\begin{frame}{Dispersion of light}
\end{frame}

\begin{frame}[label={Electromagnetic spectrum}]{Electromagnetic spectrum}
\end{frame}

\begin{frame}{Sound}
\end{frame}

\begin{frame}{Echos}
\end{frame}

\begin{frame}{Sound waves}
\end{frame}

\definecolor{MainColor}{RGB}{162,37,124}
\definecolor{SubColor}{rgb}{0.9888442211055276, 0.9511557788944723, 0.9773869346733668}
\csection{Electricity and magnetism}

\begin{frame}{Magnetic materials}
	\begin{itemize}
		\item Magnetic/ferrous/ferromagnetic materials e.g. \ce{Fe}/steel/\ce{Ni}
			\begin{itemize}
				\item Attracted to magnets
				\item May be magnetized temporarily/permanently
			\end{itemize}
		\item Non-magnetic materials e.g. \ce{Al}/wood 
	\end{itemize}
\end{frame}

\begin{frame}{Magnetic poles}
	\begin{itemize}
		\item Magnetic materials that are \textbf{magnetized} (either temporarily or permanently) are magnets
		\item All magnets have have N and S poles
		\item Like poles repel, opposite poles attract
	\end{itemize}
\end{frame}

\begin{frame}{Induced magnetism}
	\begin{columns}
	\column{0.4\textwidth}
	\includegraphics{induced-magnetism.pdf}
	\column{0.5\textwidth}
	Unmagnetized magnetic material can be magnetized by being close to / touching a magnetized magnetic material.
	\end{columns}
	
	\begin{tabular}{|l|l|L{18em}|}
		\hline
		Type & Example & Properties \\\hline
		Soft magnetic material & Iron & Magnetized easily, loses magnetism easily, makes temporary magnets \\\hline
		Hard magnetic material & Steel & Hard to magnetize, but makes permanent magnets \\\hline
	\end{tabular}
\end{frame}

\begin{frame}{Magnetic fields}
	\begin{itemize}
		\item A region in which a magnetic pole experiences a force
		\item Field lines N \textrightarrow{} S
		\item Direction of field at a point = the direction of the force on the N pole of a magnet at that point
		\item Magnetic forces \textleftarrow{} interactions between magnetic fields
		\item Relatively stronger when field lines are closer
	\end{itemize}
	\vfill
	\begin{columns}
		{}\hfill
		\column{0.3\textwidth}
		\includegraphics[width=\linewidth]{single-magnet-field.pdf}
		\hfill\column{0.3\textwidth}
		\includegraphics[width=\linewidth]{double-magnet-field-1.pdf}
		\hfill\column{0.3\textwidth}
		\includegraphics[width=\linewidth]{double-magnet-field-2.pdf}
		\hfill\mbox{}
	\end{columns}
\end{frame}

\begin{frame}{Plotting with a compass}
	(New to the 2023 syllabus, no past paper questions as of Oct/Nov 2023)
	
	\vfill
	
	\begin{columns}
		\column{0.3\textwidth}
		\includegraphics{compass-plot.pdf}
		\column{0.65\textwidth}
		\begin{enumerate}
			\item Start from one pole
			\item Mark the head ($C$) and end ($B$) of the compass
			\item Move the compass's tail to the previous head (move the tail to $C$)
			\item Continue until you reach the other pole (it'll curve there eventually)
		\end{enumerate}
	\end{columns}
The compass's arrow is an N pole.

	\vfill
\end{frame}

\begin{frame}{Plotting with iron filings}
	(New to the 2023 syllabus, no past paper questions as of Oct/Nov 2023)

	\vfill

	\begin{enumerate}
		\item Place a sheet of paper on \textbf{top} of a bar magnet
		\item Sprinkle iron filings thinly and evenly onto the paper from a ``pepper pot''
		\item Tap the paper gently
	\end{enumerate}
	
	\vfill
	
	\begin{itemize}
		\item Quick
		\item \textbf{Not} for weak magnetic fields
	\end{itemize}
	
	\vfill
\end{frame}

\begin{frame}{Field direction from a compass}
	\begin{itemize}	
		\item The arrow of compasses are north poles\\
			So they point in the direction of the magnetic field\\
			(Remember field direction = forces that a north pole experiences)
	\end{itemize}
\end{frame}

\begin{frame}{Uses of electro- and permanent magnets}
	\textbf{Permanent magnets:}
	\begin{itemize}	
		\item Uses in: Compasses, hard disks, motors, generators, microphones, speakers, credit cards, etc.
		\item Does not require a current to retain its magnetism
	\end{itemize}
	\textbf{Electromagnets:}
	\begin{itemize}	
		\item Temporary, could vary strength and direction of field
		\item Uses in: Electric bells, magnetic locks, relays, motors, generators, etc.
	\end{itemize}
\end{frame}


% TODO: Electromagnets and induction direction

\begin{frame}{Electric charge}
	\begin{itemize}
		\item There are positive and negative charges
		\item Measured in coulombs (\unit{\coulomb})
		\item Likes charges repel, opposite charges attract
		\item Rubbing \textrightarrow{} friction \textrightarrow{}\\transfer of electrons (negative charges) from one material into another
	\end{itemize}
\end{frame}

\begin{frame}{Detecting static and conductivity}
	\begin{columns}
		\column{0.5\textwidth}
		\hspace*{-1.5em}
		\includegraphics{gold-leaf.pdf}
		\column{0.5\textwidth}
		\textbf{Detecting static charges}
		
		No matter whether the charge is positive or negative, a charge brought \textbf{near} the \textbf{gold-leaf electroscope} causes the gold leaf to rise; the leaf falls back when the charge is removed.\\[\baselineskip]
		
		\textbf{Detecting conductivity}
		
		Draw a charged polythene strip firmly across the edge of the cap; the leaf should stay up even after the strip is removed.
		
		Touch the cap of the charged electroscope with different things (must be grounded). If the thing is a conductor, the leaf falls.
	\end{columns}
\end{frame}

% TODO: MISSING CONTENT
% Describe simple experiments to show the production of electrostatic charges by friction and to show the detection of electrostatic charges
% Explain that charging of solids by friction involves only a transfer of negative charge (electrons)

\begin{frame}{Electric fields}
	\begin{itemize}
		\item A region in which an electric charge experiences a force
		\item Direction of an electric field at a point is the direction of the force on a positive charge at that point
	\end{itemize}
\end{frame}

\begin{frame}{Electric field patterns}
	\begin{columns}
		\column{0.25\textwidth}
			\includegraphics[width=\textwidth]{electric-field-patterns-sphere.pdf}
			
			Around a charged conducting sphere
			
		\column{0.25\textwidth}
			\includegraphics[width=\textwidth]{electric-field-patterns-point.pdf}
			
			Around a point charge
			
		\column{0.45\textwidth}
			\includegraphics[width=\textwidth]{electric-field-patterns-opposite.pdf}
			
			Between two oppositely charged parallel conducting plates
	\end{columns}
\end{frame}

\begin{frame}{Charge by friction}
	Rubbing an object makes it charged because the friction causes electrons to be transferred from $A$ to the $B$, where $A$ becomes positive and $B$ becomes negative. Protons do not move.
\end{frame}

\begin{frame}{Conductors and insulators}
	\begin{itemize}
		\item Insulators: No free electrons, no free transfer of charge e.g. all simple molecular compounds, etc.
		
			An insulator can be charged by rubbing because the charge produced cannot move from where the rubbing occurs, i.e. the electric charge is static.
		\item Conductors: Free electrons, e.g. all metals, graphite, etc.
		\item Moving ions are not otherwise considered, but water is considered a conductor here.
	\end{itemize}
\end{frame}

\begin{frame}{Electric current}
	\mbox{}\hfill current = rate of flow of charge\hfill{}
	\begin{equation*}
		\text{current } I = \frac{\text{charge passing the point } Q}{\text{time } t}\hspace{2em}\text{ampere } \unit{\ampere} = \frac{\text{coulomb } \unit{\coulomb}}{\text{second } \unit{\second}}
	\end{equation*}\mbox{}
	
	\begin{itemize}
		\item Electrical conduction in metals is due to the movement of free electrons
		\item Conventional current is from positive to negative
		\item The flow of free electrons is from negative to positive
	\end{itemize}
\end{frame}

\begin{frame}{Ammeters}
	\begin{itemize}
		\item Always placed in \textbf{series} within a circuit
		\item Measures the current that passes through the point at which it's placed
		\item Has approximately \qty{0}{\ohm} resistance
		\item Has polarity: remember to connect it \emph{in the direction of the current}
		\item Could be analogue or digital
		\item Select the appropriate range before measurement
		\item Higher range means lower sensitivity, etc.
	\end{itemize}
\end{frame}

\begin{frame}{Electrical conduction}
	In a metal, each atom has one or more loosely held electrons that are free to move. When there is a potential difference across the ends of such a conductor, the free electrons drift slowly along it in the direction from the negative to the positive end. There is then a current of negative charge.
\end{frame}

\begin{frame}{DC and AC}
	\begin{columns}
	\column{0.575\textwidth}
	\begin{itemize}
		\item \textbf{Direct current:} electrons flow in one direction only \textrightarrow{} current in one direction only \& deflects ammeters in one direction only
		
		\item \textbf{Alternating current:} the direction of flow reverses regularly \textrightarrow{} current direction reverses \& deflects ammeters back and forth about the zero, if slow enough; doesn't register on the ammeter if too fast
			
			Frequency in hertz e.g. \qty{2}{\hertz} on the diagram; \qty{50}{\hertz} in the UK
		\item Batteries produce DC only; power supplies and generators could produce DC or AC, but we only learn about AC generators in IGCSE
		\item Iron-core transformers only work with AC!
	\end{itemize}
	\column{0.379\textwidth}
	\includegraphics[scale=0.68]{steady-dc.pdf}\\
	\includegraphics[scale=0.68]{ac.pdf}
	\hfill\mbox{}
	\end{columns}
\end{frame}

\begin{frame}{EMF and PD}
	\begin{align*}
	\text{EMF} &= \frac{\text{electrical work }W}{\text{charge }Q} = \text{units }\frac{\text{joule }\unit{\joule}}{\text{coulomb }\unit{\coulomb}} = \text{volt }\unit{\volt}\\
	&= \text{electrical work done by a source in moving a unit charge around a complete circuit}\\{}\\
	\text{PD} &= \frac{\text{electrical work }W}{\text{charge }Q} = \text{units }\frac{\text{joule }\unit{\joule}}{\text{coulomb }\unit{\coulomb}} = \text{volt }\unit{\volt}\\
	&= \text{electrical work done by a unit charge as it passes through a component}
	\end{align*}
\end{frame}

\begin{frame}{Voltmeters}
	\begin{itemize}
		\item Measures the PD across a component / some components / ``two points''
		\item Always placed in \textbf{parallel} with the component(s) that you're measuring
		\item Has polarity: remember to connect it \emph{in the direction of the current}

		\item Has extremely high resistance; almost doesn't affect the circuit
		\item Could be analogue or digital
		\item Select the appropriate range before measurement
		\item Higher range means lower sensitivity, etc.
	\end{itemize}
\end{frame}

\begin{frame}{Resistance}
	\begin{align*}
		\text{resistance }R &= \frac{\text{the potential difference across [a (group of) component(s)]}}{\text{the total current that goes through it}}\\ &= \frac{\text{voltage }V}{\text{current }I}\hspace{2em}\text{ohm } \unit{\ohm} = \frac{\text{volt } \unit{\volt}}{\text{ampere } \unit{\ampere}}
	\end{align*}
	
\end{frame}

\begin{frame}{Current--voltage graphs}
	Gradient = resistance
	
	\includegraphics{ohmic-and-diode.pdf}\includegraphics{lamp-and-thermistor.pdf}
	
	(The temperature of the thermistor is \emph{controlled} here)
\end{frame}

\begin{frame}{Resistance variance}
	For a metallic electrical conductor,
	\begin{itemize}
		\item resistance is directly proportional to length
		\item resistance is inversely proportional to cross-sectional area
	\end{itemize}
\end{frame}

\begin{frame}{Electrical energy and power}
	Energy in an electric circuit:\\
	Source of electrical energy \textrightarrow{} circuit components \textrightarrow{} surroundings
	\begin{align*}
		\text{power }P &= \text{current }I\times\text{voltage }V\\
		\text{energy }E &= \text{current }I\times\text{voltage }V\times\text{time }t\\
		&= \text{voltage }V\times\text{charge }Q
	\end{align*}
	
	Energy is in joules (\unit{\joule}) or kilowatt-hours (\unit{\kilo\watt\hour})\\
	Power is in watts (\unit{\watt})
	\begin{align*}
	\unit{\kilo\watt\hour}
	&= \text{the electrical energy used by a \qty{1}{\kilo\watt} appliance in \qty{1}{\hour}}\\
	&= \qty{3.6e6}{\joule}
	\end{align*}
\end{frame}

\begin{frame}{Circuit elements 1}
	TODO: I really don't know how to put this part in a revision resource... for now just read electrical\_symbols.pdf
	
	\includegraphics[scale=0.3]{circuit-components.jpg}
\end{frame}

\begin{frame}{Circuit elements 2}
	TODO: Same
	
	See page 216219 on the Hodder textbook
\end{frame}

\begin{frame}{Series circuits}
	\begin{columns}
	\column{0.5\textwidth}
	\centering
	\includegraphics{series.pdf}
	\column{0.5\textwidth}
	\centering
	\includegraphics{series-pd.pdf}
	\end{columns}
	\begin{itemize}
		\item The current at every point is the same i.e. $I_A = I_B = I_C = I_D$
		\item The total PD across the components = the sum of individual PDs across each component i.e. $PD(X, Y) = PD(L_1) + PD(L_2) + PD(L_3)$
		\item The total resistance across the components = the sum of individual resistance across each component i.e. $R(X, Y) = R(L_1) + R(L_2) + R(L_3)$\\(remember, lamps etc.\ are resistors in some way or another)
	\end{itemize}
\end{frame}

\begin{frame}{Potential dividers}
	$V = IR$ $\therefore$ PD across a conductor must \textuparrow, as resistance \textuparrow, for a constant current\bigskip
	
	\begin{columns}
	\column{0.4\textwidth}
	\includegraphics{potential-divider.pdf}
	\column{0.5\textwidth}
	\begin{align*}
	I &= \frac{\text{emf}}{\text{total resistance}} = \frac{V}{R_1+R_2}\\
	V_1 &= I\times R_1=\frac{V\times R_1}{R_1+R_2}=V\times\frac{R_1}{R_1+R_2}\\
	V_2 &= I\times R_2=\frac{V\times R_2}{R_1+R_2}=V\times\frac{R_2}{R_1+R_2}\\
	\frac{V_1}{V_2} &= \frac{R_1}{R_2}
	\end{align*}
	\end{columns}
	
	Sometimes the potential divider may be variable e.g. if $R_1$ is a NTC thermistor, its resistance decrease when temperature rises, so the PD across $R_2$ increases and could be used to monitor temperature.
\end{frame}

\begin{frame}{Parallel circuits}
	\begin{columns}
	\column{0.5\textwidth}
	\centering
	\includegraphics{parallel.pdf}
	\column{0.5\textwidth}
	\centering
	\includegraphics{parallel-pd.pdf}
	\end{columns}
	\begin{itemize}
		\item The current in the main branch = the sum of the current in each sub branch i.e. $I_R = I_Q + I_P$, $\therefore$ $I_R > I_x\;\forall\;x\in\{P, Q\}$
		\item Sum of the currents into a junction ($\bullet$) = sum of currents out of the junction
		\item PD across entire circuit = PD in each branch i.e. $V_1 = V_2 = \qty{1.5}{\volt}$
		\item \alert{$R_{(P \text{ parallel with } Q)} = R_P\cdot R_Q / (R_P + R_Q)$} and $R_{(P \text{ parallel with } Q)} < R_x\;\forall\;x\in\{P,Q\}$
	\end{itemize}
\end{frame}

\begin{frame}{Why lamps are connected in parallel}
	\begin{itemize}
		\item The PD across each lamp is fixed (at the
supply EMF), so the lamp shines with the same brightness irrespective of how many other lamps are switched on (as long as your power supply can supply enough power)
		\item Each lamp can be turned on and off independently; if one lamp fails, the others can still be operated
	\end{itemize}
\end{frame}

\begin{frame}{Sources in series and parallel}
	\begin{columns}
		\column{0.5\textwidth}
		
		\begin{itemize}
			\item $EMF(A, B) = \qty{3}{\volt}$
			\item $EMF(X, Y) = \qty{0}{\volt}$
			\item $EMF(Q, P) = \qty{1.5}{\volt}$\ldots{}\\but the batteries last longer
		\end{itemize}
		
		\column{0.45\textwidth}
		
		\includegraphics{series-cell.pdf}\bigskip\bigskip
		
		\includegraphics[width=0.7\textwidth]{parallel-cell.pdf}
	\end{columns}
\end{frame}

% TODO: We really need past paper questions for this

\begin{frame}{Electrical safety}
	TODO: This is a very easy topic and I don't really want to spend time writing about it for now.
\end{frame}

\begin{frame}{Electromagnetic induction 1}
	\begin{itemize}
		\item Any EMF induced by movement produces a magnetic field that opposes that movement
			
			\begin{columns}
				\column{0.6\linewidth}
					\begin{itemize}
						\item When the magnet approaches the coil, north pole first, the induced EMF makes the coil behave like a magnet that repels the original magnet with an N pole.
						\item When the magnet leaves the coil, north pole last, the induced EMF makes the coil behave like a magnet that attracts the original magnet with an S pole.

					\end{itemize}
				\column{0.35\linewidth}
					\includegraphics{induce-oppose.pdf}
			\end{columns}
	\end{itemize}
\end{frame}

\begin{frame}{Electromagnetic induction 2}
	\begin{columns}
		\column{0.51\textwidth}
			When a straight wire moves at right angles to a magnetic field:
			
			\mbox{}
			\begin{itemize}
				\item Use the gesture as shown
				\item Point your thumb in the direction of the wire's movement
				\item Point your index finger in the direction of the magnetic field (N\textrightarrow S)
				\item The current is shown by the direction of your middle finger
			\end{itemize}
		\column{0.44\textwidth}
			\includegraphics{right-hand-rule.pdf}
	\end{columns}
\end{frame}

\begin{frame}{Electromagnetic induction 3}
	\begin{itemize}
		\item Factors affecting magnitude of induced EMF:
			\begin{itemize}
				\item Speed of relative motion\footnote{Only the component of the speed of relative motion that's in the direction of the ``motion''/thumb in the right-hand rule is counted}
				\item The strength of the magnet
				\item The number of turns on the coil
			\end{itemize}
	\end{itemize}
\end{frame}

\begin{frame}{AC generator}
\end{frame}

\begin{frame}{Magnetic effect of a current}
\end{frame}

\begin{frame}{Force on conductor with current}
\end{frame}

\begin{frame}{DC motor}
\end{frame}

\begin{frame}{Transformer}
\end{frame}

\definecolor{MainColor}{RGB}{180,40,45}
\definecolor{SubColor}{rgb}{0.9890909090909092, 0.9509090909090907, 0.952272727272727}
\csection{Nuclear physics}

\begin{frame}{The atom}
\end{frame}

\begin{frame}{Rutherford experiment}
\end{frame}

\begin{frame}{The nucleus}
\end{frame}

\begin{frame}{Fission and fusion}
\end{frame}

\begin{frame}{Nuclear reactors}
\end{frame}

\begin{frame}{Radiation types}
\end{frame}

\begin{frame}{Alpha decay}
\end{frame}

\begin{frame}{Beta decay}
\end{frame}

\begin{frame}{Gamma emissions}
\end{frame}

\begin{frame}{Deflection in EM fields}
\end{frame}

\begin{frame}{Ionizing radiation}
\end{frame}

\begin{frame}{Background radiation}
\end{frame}

\begin{frame}{Nuclear stability}
\end{frame}

\begin{frame}{Half-life}
\end{frame}

\begin{frame}{Nuclear safety}
\end{frame}

\definecolor{MainColor}{RGB}{227,103,42}
\definecolor{SubColor}{rgb}{0.9930290456431536, 0.9621576763485477, 0.9469709543568463}
\csection{Space physics}

\begin{frame}{The earth}
\end{frame}

\begin{frame}{Orbital speed}
\end{frame}

\begin{frame}{The moon}
\end{frame}

\begin{frame}{The solar system}
\end{frame}

\begin{frame}{The accretion model}
\end{frame}

\begin{frame}{Gravity}
\end{frame}

\begin{frame}{Light speed}
\end{frame}

\begin{frame}{The sun as a star}
\end{frame}

\begin{frame}{Hydrogen fusion}
\end{frame}

\begin{frame}{Stars basics}
	\begin{itemize}
	\item Galaxies are each made up of many billions of stars
	\item The Sun is a star in the galaxy known as the \textbf{Milky Way}
	\item The Sun is the closest star to us, by a wide margin
	\item Astronomical distances can be measured in light-years
	\end{itemize}
\end{frame}

\begin{frame}{Star life cycles}
	%\begin{columns}
	%\column{0ex}
	%\column{\textwidth}
	\begin{enumerate}
		\setlength{\itemsep}{-0.5\baselineskip}
		\item interstellar clouds of gas and dust that contain \ce{H2}
		\item internal grav attraction \textrightarrow{} collapses \& temperature\textuparrow{} \textrightarrow{} protostar
		\item inward force of grav attraction = outward force by high temperature at center\\\textrightarrow{} stable star
		\item runs out of \ce{H2} as nuclear fusion fuel
	\end{enumerate}
	{\usebeamercolor[fg]{structure}{SMALL}}\vspace*{-0.5\baselineskip}
	\begin{enumerate}
		\setlength{\itemsep}{-0.5\baselineskip}
		\item[5.] \textrightarrow{} right giant
		\item[6.] \textrightarrow{} planetary nebula w/ white dwarf star at center
	\end{enumerate}
	{\usebeamercolor[fg]{structure}{LARGE}}\vspace*{-0.5\baselineskip}
	\begin{enumerate}
		\setlength{\itemsep}{-0.5\baselineskip}
		\item[5.] \textrightarrow{} red supergiant
		\item[6.] \textrightarrow{} supernova\\
				\textrightarrow{} nebula containing \ce{H2} and new heavier elements\\w/ nutron star or black hole at center\\(the nebula from a supernova may form new stars with orbiting planets)
	\end{enumerate}
	%\end{columns}
\end{frame}

\begin{frame}{The universe}
\end{frame}

\begin{frame}{Redshift}
\end{frame}

\begin{frame}{CMBR}
\end{frame}

\begin{frame}{The Big Bang Theory}
	\begin{itemize}
		\item Initially: one point
		\item 13.7 billion years ago: the big bang, the huge explosion
		\item Ever-after: moving further
	\end{itemize}
\end{frame}

\begin{frame}{Universe expansion}
\end{frame}

\begin{frame}{The Hubble constant}
	\begin{align*}
		\text{Hubble constant } H_0 &= \frac{\text{speed at which the galaxy is moving away from earth } v}{\text{its distance from the earth } d}\\
		&\approx 2.2\times10^{-18} \text{ per second} \text{{} {} (memorize this)}
	\end{align*}	
	\begin{align*}
		\displaystyle \text{age of the universe } t = \frac{d}{v} &= \frac{1}{H_0}\\
		&\approx 14.4 \text{ billion years}\\
		\text{(The Big Bang started}& \text{ from a single point)}
	\end{align*}
	
	\textbf{Complete question~x.} % TODO: NOT INCLUDED
\end{frame}

\begin{frame}{Age of the universe}
\end{frame}

\definecolor{MainColor}{RGB}{0,0,0}
\definecolor{SubColor}{rgb}{0.97, 0.97, 0.97}
\csection{Exam technique}
\begin{frame}{Recap: Equivalent units}
	\begin{itemize}
		\item $\unit{\newton} = \unit{\kilo\gram\metre\per\second\squared}$ (Force)
		\item $\unit{\newton\second} = \unit{\kilo\gram\metre\per\second}$ (Impulse/momentum)
		\item TODO: Add more!
	\end{itemize}
	
	\textbf{Complete question~4.}
\end{frame}

\end{document}